

2024 Mathematics

National 5 - Paper 2

Question Paper Finalised Marking Instructions

© Scottish Qualifications Authority 2024

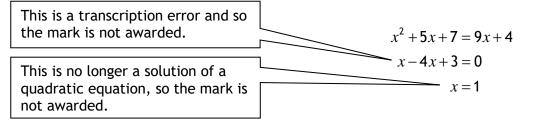
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

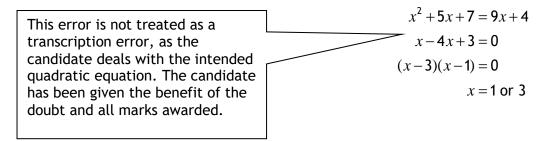
Downloaded free from https://sqa.my/

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.


For each question, the marking instructions are generally in two sections:

generic scheme — this indicates why each mark is awarded illustrative scheme — this covers methods which are commonly seen throughout the marking


In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each \bigcirc . There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$O^{5} O^{6}$$

$$O^{5} x = 2 x = -4$$

$$O^{6} y = 5 y = -7$$
Horizontal: $O^{5} x = 2$ and $x = -4$ Vertical: $O^{5} x = 2$ and $y = 5$

$$O^{6} y = 5$$
 and $y = -7$

$$O^{6} x = -4$$
 and $y = -7$

You must choose whichever method benefits the candidate, **not** a combination of both.

(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ must be simplified to 43
$\frac{15}{0\cdot 3}$ must be simplified to 50	$\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8*	

*The square root of perfect squares up to and including 144 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$

 $= 2x^4 + 5x^3 + 8x^2 + 7x + 2$

gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking Instructions for each question

Q	uestion	Generic scheme	Illustrative scheme	Max mark
1.		• ¹ know how to decrease by 26%	• ¹ ×0.74	3
		\bullet^2 know how to calculate value	• ² 460×0.74 ³	
		• ³ evaluate	• ³ (£) 186.40	
Note	s:			
1. Co	orrect answ	ver without working	award 3/3	
2. Fo	or the awar	d of \bullet^3 accept 186. However, do not acc	ept 186.4 or 190.	
		y-year approach, accept $74 = 340.4(0) \rightarrow 340.4 \times 0.74 = 251.9(0)$		
	→ 2 51.	$90 \times 0.74 (= 186.406) = 186.41 \text{ or } 186.40 \text{ or }$	r 186 award 3/3	
4. Di	sregard rou	unding subsequent to the correct answe	r.	
		correct percentage is used, the working ⁷ awarding 2/3.	must be followed through to give the	
eg	460×1.20	6 ³ =920.17 or 920	award 2/3 🗴	∕1√1
		correct power (\geq 2) is used, the working awarding 2/3.	must be followed through to give the	
eg	460×0.74	4 ² =251.90 or 252	award 2/3 🗸	× √1
		able for incorrect working subsequent to $74^3 = 186.40 \rightarrow 460 - 186.40 = 273.60$	o correct answer award 2/3 🗸	(x
8. W	here divisio	on is used:		
	eg 460÷	th $0.74^3 \bullet^1$ is not available. $0.74^3 = 1135.17$ or 1135 th an incorrect percentage \bullet^1 and \bullet^2 are	award 2/3 ×v	∕1√1
(D	, 0	$1.26^3 = 229.96 \text{ or } 230$	award 1/3 ×	∵√ 1
Com	monly Obs	erved Responses:		
1. (a) 460×0.74	4 ³ = 186.40304	award 2/3 🗸	⁄√2
(b) 460×0.74	4 ³ =186.403	award 2/3 🗸	/ x
2. 46	60×0.74=3	340.40 or 340	award 1/3 🗸	×√ 2
3. 46	50×0.74×3	8=1021.20 or 1021	award 1/3 🗸	× √2
4. (a) 460×0.2	$6 = 119.60 \rightarrow 460 - 3 \times 119.60 = 101.20$	award 1/3 🗸	« √2
(b) 460×0.2	$26 = 120 \rightarrow 460 - 3 \times 120 = 100$	award 1/3 🗸	×√ 2
5.46	50×0.26×3	=358.80 or 359	award 0/3 🗱	:√2

Q	uestic	n	Generic scheme		Illustrative scheme		
2.			• ¹ correct method	•1	$1.22 \times 10^6 \times 250$ or equivalent	2	
			• ² evaluate and write in scientific notation	•2	3.05×10 ⁸		
Note	s:						
1. Co	orrect	answe	er without working		award 2/2		
•	<i>,</i>	305 0 305 × ′	00 000 10 ⁶		award 1/2 √√ award 1/2 √×	2	
3. For the award of \bullet^2 (a) $(1.22 \times 10^6 \times 250 =) 3.05 \times 10^8 = 3.1 \times 10^8$ or 3×10^8 award 2/2							
(b) (1.2	2×10 ⁶	$3 \times 250 = 3.1 \times 10^8$ or 3×10^8		award 1/2 🗸 🗴		
	4. For subsequent incorrect working, \bullet^2 is not available. eg $250 \div (1.22 \times 10^6) = 2.049180328 \times 10^{-4} = 2.05 \times 10^{-9}$ award 0/2 **						
Com	monly	[,] Obse	erved Responses:				
1. 1	1. $1.22 \times 10^6 \div 250 = 4.88 \times 10^3$ award $1/2 \times \sqrt{1}$			1			
2. (a) 250	÷(1.22	2×10^{6}) = 2.05 × 10 ⁻⁴ or 2.049×10 ⁻⁴	award 1/2 ×√1			
(b) 250	÷(1.22	2×10^{6} = 2.05 × 10 ⁸ or 2.049×10 ⁸		award 0/2 ××		

Q	uestion	Generic scheme	Illustrative scheme	Max mark	
3.		•1 correct substitution into cosine rule	• $\frac{18^2 + 25^2 - 34^2}{2 \times 18 \times 25}$ stated or implied by • ²	3	
		•² evaluate cos A	• $^{2} -\frac{23}{100}$ or $\frac{-207}{900}$ or -0.23		
		• ³ calculate angle	• ³ 103(.29)		
	Notes: 1. Correct answer without working award 0/3				
2. De	2. Degree sign is not required.				
3. Fo	3. For the award of \bullet^1 accept eg 34 ² = 18 ² + 25 ² - 2×18×25×cos A				
4. Fo	4. For the award of \bullet^3 accept $\cos A = 103(.29)$				
(a	$) \frac{34^2+2}{2\times 3^2}$	ng angle has been calculated correctly $\frac{15^2 - 18^2}{4 \times 25} = \frac{1457}{1700} \rightarrow 31(.01)$	award 2/3 × 🗸	1√1	
(b	b) $\frac{34^2+1}{2\times 3}$	$\frac{18^2 - 25^2}{34 \times 18} = \frac{855}{1224} \to 46 \text{ or } 45.69$	award 2/3 × 🗸	1√1	
6. BE	WARE	180 - (18 + 25 + 34) = 103	award 0/3		
7. WI		e than one final angle is stated, • ³ is not	available		
eg	$\frac{18^2+22}{2\times18}$	$\frac{5^2 - 34^2}{8 \times 25} \rightarrow -0.23 \rightarrow 103.3$ and 256.7	award 2/3 🗸 🗸	×	
(8. Inappropriate use of RAD or GRAD should only be penalised once in Qu3, Qu11 or Qu13 (a) 2 or 1.80 RAD (b) 115 or 114.77 GRAD 				
Com	monly Ob	bserved Responses:			
1. 18	$\frac{3^2+25^2-2}{2\times18\times2}$	$\frac{-34^2}{25} \rightarrow -0.23 \rightarrow \cos^{-1}(0.23) = 76.7 \rightarrow 180$	-76.7 = 103.3 award 3/3		

Question	Generic scheme	Illustrative scheme	Max mark
4.	• ¹ start to process left hand side	• $5x - 10 + 4$	3
	 rearrange (collect constants on one side and variables on the other side) 	• ² -14 < 2x or $-2x < 14$	
	• ³ solve for x	• 3 -7 < x or x > -7	
Notes:			
	swer without valid working ated substitution as invalid working.	award 0/3	
LHS of	nust be evidence that the candidate has of the inequation by either: ersing the direction of the inequality sign a	-	on the
ég	$5x - 10 + 4 < 7x + 8 \rightarrow -2x < 22 \rightarrow x > -2x < 2x < 2x > -2x < 2x < 2x < 2x < 2x > -2x < 2x $		√ 1
• • •	ecting the x term(s) on the RHS of the ine	•	
5	$5x-10+4 < 7x+8 \rightarrow 2 < 2x \rightarrow 1 < x$ a candidate requires to do neither of the a	award 2/3 \checkmark	ev 1
	$5x-10+4 < 7x+8 \rightarrow 2x < 14 \rightarrow x < 7$	award 1/3 √×	×
3 For subseq	uent incorrect working, \bullet^3 is not available		
	$< x \rightarrow x < -7$	award 2/3 ✓√	×
(b) -7	$\langle x \rightarrow x = -7$	award 2/3 🗸	(x
Commonly Ol	bserved Responses:		
1. $5x - 2 + 4 < 5x - 2 + 5$	$<7x+8 \rightarrow -2x < 6 \rightarrow x > -3$	award 2/3 × 🗸	1√1
2. (a) 5 <i>x</i> -10	$0+4=7x+8 \rightarrow -2x=14 \rightarrow x=-7 \rightarrow x>-2x=14$	7 award 3/3	
(b) 5 <i>x</i> -10	$0+4=7x+8 \rightarrow -2x=14 \rightarrow x=-7$	award 2/3 🗸 🗸	×

Q	uestior	n	Generic scheme	Illustrative scheme	Max mark	
5.			• ¹ know that 116% = 278.40	• ¹ 116% = 278.40	3	
			• ² begin valid strategy	• ² eg $(1\% =)\frac{278.40}{116}$		
			• ³ complete calculation within valid strategy	• ³ (£) 240		
Note	s:					
1. Co	orrect a	answe	er without working	award 3/3		
2. (a	2. (a) $116\% = 278.40 \rightarrow 16\%$ of $278.40 = 44.54$			award 1/3 🗸 🗙		
(b) 16% c	of 278	8.40=44.54	award 0/3		
3. (a) 116%:	=278	$.40 \rightarrow 116\%$ of 278.40=322.94	award 1/3 🗸	(X	
(b) 116%	of 27	78.40=322.94	award 0/3		
4. (a) 116%:	=278	$.40 \rightarrow 84\%$ of 278.40=233.86	award 1/3 🗸	(X	
(b) 84% c	of 27	8.40=233.86	award 0/3		
Com	monly	Obse	erved Responses:			
1	.78.40 1.16	= 240)	award 3/3		
2. 2	.78.40 84	= 3.3	1428→ 331.43	award 2/3 🗶	′1√1	

Que	estion	Generic scheme	Illustrative scheme	Max mark			
6. (a	a)	• ¹ factorise	• $y(y-6)$	1			
Notes:							
1. lf p	1. If part (a) is not attempted, accept correct answer to part (a) in part (b) (see COR 1).						
	-	erved Responses:					
,	$(y\pm 0)$		award 0/1 √2				
	CORs in p b)		$2(\alpha, \beta)(\alpha, \beta)$	2			
	5)	• ² factorise denominator		L			
		• ³ simplify	$e^3 \frac{y}{y+3}$				
Notes: 1. Corr	ect answe	er without working	award	2/2			
2. For :	subsequer	nt incorrect working \bullet^3 is not available	eg $\frac{y}{y+3} = \frac{1}{1+3} = \frac{1}{4}$ award	1/2 ✓×			
3. ● ³ is	only avail	able when both the numerator and de	nominator have at least two factors.				
4. Do n	ot penali	se the use of $(y-6)(y\pm 0)$ in part (b)	if already penalised in part (a)				
ie (a	a) (y-6)($(y \pm 0)$ (b) $\frac{(y-6)(y\pm 0)}{(y-6)(y+3)} = \frac{y\pm 0}{y+3}$ aw	ard 0/1 in (a) $\checkmark 2$ and award 2/2 in (b)	√√1			
5. Whe	ere the ar	nswer to part (a) and the numerator in	part (b) are different, see CORs below.				
		erved Responses: arts (a) and (b) award as follows:					
1. (a) N	lo respon	se (b) $\frac{y(y-6)}{(y-6)(y+3)} = \frac{y}{y+3}$ awa	ard 1/1 in (a) 🖌 and award 2/2 in (b) ,	(
2. (a)	y(y-6)	(b) $\frac{(y-3)(y+3)}{(y-6)(y+3)} = \frac{y-3}{y-6}$ awa	ard 1/1 in (a) 🖌 and award 1/2 in (b)	√ x			
3. (a) ((y-3)(y-3)	+3) (b) $\frac{y(y-6)}{(y-6)(y+3)} = \frac{y}{y+3}$ awa	ard 0/1 in (a) \star and award 2/2 in (b)	√ √			
4. (a) (4. (a) $(y-3)(y+3)$ (b) $\frac{(y-3)(y+3)}{(y-6)(y+3)} = \frac{y-3}{y-6}$ award 0/1 in (a) × and award 2/2 in (b) $\checkmark 1$						
5. (a) (5. (a) $(y-3)(y+3)$ (b) $\frac{(y-6)(y\pm 0)}{(y-6)(y+3)} = \frac{y\pm 0}{y+3}$ award 0/1 in (a) × and award 1/2 in (b) ×						
6. (a) ((y-6)(y-	+2y) (b) $\frac{(y-6)(y+2y)}{(y-6)(y+3)} = \frac{y+2y}{y+3}$ av	vard 0/1 in (a) × and award 1/2 in (b)	√√2			

Question	Generic scheme	Illustrative scheme	Max mark
7.	 ¹ correct substitution into volume of sphere formula ² correct substitution into volume of cuboid formula and know to subtract volume of hemisphere from volume of cuboid ³ consistent calculation (see Note 3) ⁴ round final answer to 2 significant figures and state correct units 	• ¹ $\frac{4}{3} \times \pi \times 3^{3}$ • ² $7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^{3}$ (=196-56.54) • ³ 139.45 • ⁴ 140 cm ³	4
	figures and state correct units		

Notes:

1. Correct answer without working

award 0/4

- 2. For the award of \bullet^3 , the calculation must involve the sum or difference of a calculation involving a fraction, π and a power, and a calculation of a product of at least two numbers.
- 3. Accept variations in π to at least two decimal places

eg
$$7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times 3.14 \times 3^3 = 139.48 = 140 \text{ cm}^3$$

4. Disregard errors due to premature rounding provided there is evidence. However do not accept rounding of $\frac{4}{3}$ to fewer than 2 decimal places

eg (a)
$$7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 196 - 0.5 \times 1.33 \times 3.14 \times 3^3 = 196 - 56.38 = 139.62 \rightarrow 140 \text{ cm}^3$$

award 4/4

(b)
$$7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 196 - 0.5 \times 1.3 \times 3.14 \times 3^3 = 196 - 55.1 = 140.9 \rightarrow 140 \text{ cm}^3$$

award $3/4 \checkmark \checkmark \checkmark 1$

(c)
$$7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 196 - 56.38 = 139.62 \rightarrow 140 \,\mathrm{cm}^3$$
 award $3/4 \,\sqrt[4]{4} \,\sqrt[4]{$

5. (a) In awarding •³ answers to intermediate calculations which are **whole numbers** should not be rounded

eg (i)
$$7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 196 - 57 = 139 \rightarrow 140 \text{ cm}^3$$
 award 4/4
(ii) $7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 200 - 57 = 142 \rightarrow 140 \text{ cm}^3$ award 2/4

(ii)
$$7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 200 - 57 = 143 \rightarrow 140 \text{ cm}^3$$
 award $3/4 \checkmark \checkmark \checkmark \checkmark 1$

(b) In awarding \bullet^4 intermediate calculations need not be shown

eg
$$7 \times 7 \times 4 - \frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 140 \text{ cm}^3$$
 award 4/4

6. \bullet^4 is only available where the final answer requires rounding

eg
$$7 \times 7 \times 4 - \frac{4}{3} \times \pi \times 3^3 = 196 - 113 = 83 \text{ cm}^3$$
 award 2/4 $\checkmark \times \checkmark 1 \times$

Question	Generic scheme	Illustrative scheme	Max mark
7. (continued)			
Commonly Obse	rved Responses:		
1. $7 \times 7 \times 4 - \frac{4}{3} \times$	$\pi \times 3^3 = 82.902 = 83 \text{cm}^3$	award 3/4	√× √1√1
2. (a) 7×7×4–	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 6^3 = -256.389 = -260 \text{cm}^3$	award 2/4	×√1√1×
(b) 7×7×4-	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 6^3 = 256.389 = 260 \mathrm{cm}^3$	award 2/4	× √1 × √1
(c) $\frac{1}{2} \times \frac{4}{3} \times \pi \times$	$6^3 - 7 \times 7 \times 4 = 256.389 = 260 \mathrm{cm}^3$	award 2/4	× ×√1√1
3. (a) $7 \times 7 \times 4 + \frac{1}{2}$	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 252.5 = 250 \mathrm{cm}^3$	award 3/4	√× √1√1
(b) $7 \times 7 \times 4 + 3$	$\frac{4}{3} \times \pi \times 3^3 = 309.09 = 310 \mathrm{cm}^3$	award 3/4	√× √1√1
(c) 7×7×4+	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 6^3 = 648.389 = 650 \mathrm{cm}^3$	award 2/4	××√1√1
4. (a) 7×7×4	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^2 = 177.15 = 180 \mathrm{cm}^3$	award 3/4	×√√ 1√1
(b) 7×7×4	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^3 = 177.15 = 180 \mathrm{cm}^3$	award 3/4	√√× √1
(c) $7 \times 7 \times 4 - \frac{1}{2}$	$\frac{4}{3} \times \pi \times 3 = 189.71 = 190 \mathrm{cm}^3$	award 2/4	×√√2√1
5. (a) $\frac{4}{3} \times \pi \times 3^3 =$	= 110 cm ³	award 2/4	√×√ 2√1
(b) $\frac{1}{2} \times \frac{4}{3} \times \pi \times$	$3^3 = 57 \text{cm}^3$	award 2/4	√×√ 2√1
6. (a) $\frac{4}{3} \times \pi \times 6^3 =$	= 900 cm ³	award 1/4	× ×√2√1
(b) $\frac{1}{2} \times \frac{4}{3} \times \pi \times$	$6^3 = 450 \mathrm{cm}^3$	award 1/4	××√2√ 1
$7. 7 \times 7 \times 4 = 20$	0 cm ³	award 1/4	××√2√1

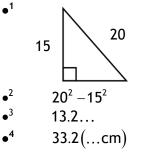
Q	uestio	'n	Generic scheme	Illustrative scheme	Max mark
8.			 ¹ correct substitution into quadratic formula 	$\bullet^1 \frac{-8\pm\sqrt{8^2-4\times3\times1}}{2\times3}$	3
			• ² evaluate discriminant	• ² 52 (stated or implied by • ³)	
			• ³ calculate both roots correct to two decimal places	• ³ -0.13, -2.54	
Note	s:				
1. Co	orrect	answe	er without working	award 0/3	
2. Fo	or a sol	lution	obtained by repeated substitution	award 0/3	
3. ● ²	is avai	ilable	for $\frac{-4\pm\sqrt{13}}{3}$		
			f of \bullet^2 accept ± 0.131 or ± 2.535 (or binant.	rounded to two decimal places) as evi	dence
5. ● ³	is only	ı avail	lable when $b^2 - 4ac > 0$ and the roots r	equire rounding.	
6. Fo	r subs	equer	nt incorrect working \bullet^3 is not available		
eg	<u>-8±</u>	$\frac{\sqrt{8^2}}{2\times 3}$	$\frac{4\times3\times1}{3}\rightarrow-0.13,-2.54\rightarrow0.13,-2.54$	award 2/3 🗸	΄ χ
Com	monly	Obse	erved Responses:		
1. 52	$b^2 - (b^2 -$	- 4 ac)		award 1/3 × 🗸	x
			$\frac{-4 \times 3 \times 1}{2 \times 3} \rightarrow -8 \frac{\pm \sqrt{52}}{6} \rightarrow -0.13, -2.54$	award 3/3	
(b)	(b) $-8 \pm \frac{\sqrt{8^2 - 4 \times 3 \times 1}}{2 \times 3} \rightarrow -8 \frac{\pm \sqrt{52}}{6} \rightarrow -6.80, -9.20$ award 2/3 × $\checkmark \checkmark 1$				
			$\frac{-4\times8\times1}{8} \rightarrow \frac{-3\pm\sqrt{-23}}{2\times8} \rightarrow 0.11, -0.49$	award 1/3 🗙	1×
(b	$) \frac{-3\pm}{2}$	$\frac{1}{2} \sqrt{3^2} - \frac{1}{2} \sqrt{3^2}$	$\frac{-4\times8\times1}{8} \rightarrow \frac{-3\pm\sqrt{23}}{2\times8} \rightarrow 0.11, -0.49$	award 0/3 ××	×
(c)) <u>-8±</u>	$\sqrt{8-4}$ 2×3	$\frac{4\times3\times1}{3} \rightarrow \frac{-8\pm\sqrt{-4}}{6} \rightarrow -1.00, -1.67$	award 0/3 🗙	2×

Question		on	Generic scheme	Illustrative so	heme	Max mark
9.			• ¹ multiply by e	•1 $ef = 2d + 3$		3
			• ² subtract 3	• ² $ef - 3 = 2d$		
			• ³ divide by 2	• ³ $d = \frac{ef-3}{2}$		
Notes:						
1. Fo	or a co	rrect	answer without working		award 0/3	
2. Fo	or the a	award	l of • ³ accept $d = \frac{e \times f - 3}{2}$ or $d = (ef - 3)$	$(-3) \div 2 \text{ or } d = \frac{ef}{2} - \frac{3}{2}$		
3. BE	EWARE	ef =	$2d+3 \rightarrow \frac{ef}{2} = d+3 \rightarrow d = \frac{ef-3}{2}$		award 1/3 🗸 🗴	×
Com	monly	Obse	erved Responses:			
1. $ef = 2d + 3 \rightarrow ef - 3 = 2d \rightarrow d = ef - 3 \div 2$ award $2/3 \checkmark \checkmark \times$					×	
2. ef	f = 2d	$+3 \rightarrow$	$3ef = 2d \rightarrow \frac{3ef}{2} = d$		award 1/3√×√	⁄2

Q	Question		Generic scheme	Illustrative scheme	Max mark
10.			 ¹ marshal facts and recognise right-angled triangle (diagram must include right angle) 	•1 7.5 10	4
			• ² consistent Pythagoras statement	• ² $10^2 - 7.5^2$	
			\bullet^3 calculate third side	• ³ 6.6	
			• ⁴ calculate width	• ⁴ 33.2(cm)	

Notes:

1. Correct answer without working


award 0/4

- 2. In the absence of a diagram or diagram with no right angle marked accept $10^2 7.5^2$ or $20^2 15^2$ as evidence for the award of \bullet^1 and \bullet^2 .
- 3. For the award of e^2 accept $10^2 = x^2 + 7.5^2$ or $20^2 = x^2 + 15^2$.

4. **BEWARE**

- (a) Where a diagram is shown, working must be consistent with the diagram.
- (b) \bullet^2 is not available for an incorrect diagram leading to $10^2 7.5^2$.
- 5. •⁴ is only available following a Pythagoras or trigonometric calculation within a valid right-angled triangle using side lengths of either 10 and 7.5 or 20 and 15.

6. Alternative method:

Commonly Observed Responses:

- **1.** $10^2 + 7.5^2 \rightarrow 12.5 \rightarrow 45$
- (a) working inconsistent with correct diagram award $3/4 \checkmark \times \checkmark 1 \checkmark 1$ (b) working consistent with candidate's diagram award $3/4 \times \sqrt{1} \sqrt{1} \sqrt{1}$ (cosine rule may be used to calculate third side) (c) no diagram or diagram with no right angle marked award $2/4 \times \sqrt{1} \sqrt{1}$ 2. $15^2 - 10^2 \rightarrow 11.18... \rightarrow 42.36$ (see Note 5)
 - (a) working consistent with candidate's diagram (b) no diagram or diagram with no right angle marked
 - award $2/4 \times \sqrt{1} \sqrt{1} \times$ award $1/4 \times \sqrt{1}$

(Question		Generic scheme	Illustrative scheme	Max mark
.11.			• ¹ re-arrange equation	• ¹ $\sin x = \frac{8}{17}$	3
			• ² find one value of x	• ² 28(.07)	
			• ³ find second value of x	• ³ 151.9(2) or 152	
Note	s:				1
(a (b	, , ,	out w peate	orking ed substitution	award 1/3 ×× award 1/3 ××	
2. De	egree si	gns a	are not required.		
3. Do	o not pe	enalis	se premature or incorrect rounding pro	vided given answers round to 28 and 15	52.
			han two final values are stated, \bullet^3 is no		
eg	$\sin x = \frac{1}{2}$	17	>28, 152, 208	award 2/3 🗸	×
			use of RAD or GRAD should only be per = $0.4899 \rightarrow 0.5$, 179.5 (RAD)	nalised once in Qu3, Qu11 or Qu13	
(b) $\sin^{-1}($	$\left(\frac{8}{17}\right)$	$=$ 31·19 \rightarrow 31, 149 (GRAD)		
Com	monly (Obse	erved Responses:		
		-	2 and $ullet^3$ are only available for consister	nt 3 rd and 4 th quadrant angles	
eg	$s \sin x =$	= <u>8</u> 17	$\frac{1}{7} \rightarrow 208, 332$	award 2/3 🗙	1√1
		.,	$\rightarrow x = 36.03, 143.97 (\rightarrow 36, 144)$	award 2/3 🗙	1√1
			$\rightarrow \sin x = 0.59 \rightarrow x = 36.16, 143.84 (\rightarrow 36)$		1√1
(c) $\sin x =$	= <u>10</u> 17	$\rightarrow \sin x = 0.58 \rightarrow x = 35.45, 144.55 (\rightarrow 35)$, 145) award 1/3 **	√1

Q	uestion	Generic scheme	Illustrative scheme	Max mark				
12.		• ¹ correct denominator	• $(x+5)(x-4)$	3				
		• ² correct numerator(s).	• ² 2(x-4)+3(x+5)					
		 ³ express in simplest form (remove brackets in numerator and collect like terms) 	$\bullet^3 \frac{5x+7}{(x+5)(x-4)}$					
Note	s:							
1. Co	orrect answ	er without working.	award 3/3					
2. Ac	ccept $\frac{2}{(x+5)}$	$\frac{(x-4)}{(x-4)} + \frac{3(x+5)}{(x+5)(x-4)}$ for the award	of \bullet^1 and \bullet^2					
			$x-4$ for the award \bullet^1 unless the correct					
(ā	a) $\frac{2(x-4)}{x+5\times x-4}$	the brackets appear in the final answer $\frac{1}{-4} + \frac{3(x+5)}{x+5 \times x-4} \rightarrow \frac{5x+7}{x^2+x-20} \text{ or } \frac{5x+7}{(x+3)^2}$						
(t	$\frac{2(x-4)}{x+5\times x-4}$	$\frac{)}{-4} + \frac{3(x+5)}{x+5 \times x-4} \rightarrow \frac{5x+7}{x+5 \times x-4}$	award 2/3 🗙	√1				
	r a consiste	lidate chooses to expand the brackets i nt expansion (unless incorrect expansio	n the denominator, then \bullet^3 is only availon already appears at \bullet^1)	lable				
(a	$) \frac{2(x-1)}{(x+5)(x+5)}$	$\frac{4}{x-4} + \frac{3(x+5)}{(x+5)(x-4)} = \frac{5x+7}{x^2+x-20}$	award 3/3					
(b	$\frac{2(x-1)}{(x+5)(x+5)}$	$\frac{4}{x-4} + \frac{3(x+5)}{(x+5)(x-4)} = \frac{5x+7}{x^2-20}$	award 2/3 🗸	/ x				
(c	$\frac{2(x-4)}{x^2-20}$	$+\frac{3(x+5)}{x^2-20} = \frac{5x+7}{x^2-20}$	award 2/3 🗙	√1				
5. Fo		nt incorrect working, $ullet^3$ is not available						
	,	$\frac{4}{x-4} + \frac{3(x+5)}{(x+5)(x-4)} = \frac{5x+7}{x^2+x-20} = \frac{5}{x^2}$	$\frac{1}{x^2 - 20} = \frac{12}{x^2 - 20}$ award 2/3 \checkmark	´×				
Com	Commonly Observed Responses:							
1. ($\frac{2x-8}{x+5)(x-4)}$	$\frac{3x+15}{(x+5)(x-4)} = \frac{5x-23}{(x+5)(x-4)}$	award 2/3 🗸	´×				
2. $\frac{1}{(1+1)^{2}}$	$\frac{2x-4}{x+5)(x-4)}$	$\frac{3x+5}{(x+5)(x-4)} = \frac{5x+1}{(x+5)(x-4)}$	award 1/3 🗸 🗙	×				

Q	uestion	Generic scheme	Illustrative scheme	Max mark
13.		Method 1 • ¹ correct substitution into sine rule	$\bullet^1 \frac{BC}{\sin 40} = \frac{22}{\sin 110}$	5
		• ² re-arrange formula	$e^{2} \frac{22\sin 40}{\sin 110}$	
		• ³ calculate BC	• ³ 15.0	
		 ⁴ consistent substitution into appropriate trig formula 	• ⁴ $\sin 30 = \frac{BD}{15.0}$ or $\frac{BD}{\sin 30} = \frac{15.0}{\sin 90}$	
		● ⁵ calculate BD	• ⁵ 7.5 (cm)	
		Method 2 • ¹ correct substitution into sine rule	$\bullet^1 \frac{AB}{\sin 30} = \frac{22}{\sin 110}$	
		• ² re-arrange formula	• ² $\frac{22\sin 30}{\sin 110}$	
		• ³ calculate AB	• ³ 11.7	
		 ⁴ consistent substitution into appropriate trig formula 	• ⁴ $\sin 40 = \frac{BD}{11.7}$ or $\frac{BD}{\sin 40} = \frac{11.7}{\sin 90}$	
		● ⁵ calculate BD	• ⁵ 7.5 (cm)	

Question	Generic scheme	Illustrative scheme	Max mark					
13. (continued)	13. (continued)							
Notes:								
1. Correct answe	er without working	award 0/5						
2. Do not penalis	se omission of degree signs.							
However, do	for sdue to premature rounding provided not accept sin40 or sin110 rounded to $l_{10}^{-40} = \frac{22 \times 0.6}{0.9} = \frac{13.2}{0.9} = 14.7 \rightarrow BD = 14.7$							
(b) Where bot (i) further	th AB and BC are calculated correctly a th AB and BC are calculated but one is o working, then apply the MIs based on the her working, disregard incorrect length	award $3/5 \sqrt{\sqrt{xx}}$ calculated incorrectly, if there is: he length used to calculate BD						
	rategies for • ⁴ $n60 = \frac{DC}{15.0} (DC = 12.99) \rightarrow \sqrt{(15.0.100)}$ $ea = \frac{1}{2} \times 22 \times 15(.048) \times \sin 30$ (Area =							
(a) 6 or 5.9 (b) (RAD) (i) AB =	 6. Inappropriate use of GRAD or RAD should only be penalised once in Qu3, Qu11 or Qu13 (a) 6 or 5.9(4) (GRAD) (b) (RAD) (i) AB = 491 → BD = 366 (ii) BC = ±371 → BD = 366 but •³ is not available due to the negative length of BC 							
Commonly Obse	Commonly Observed Responses:							
1. (a) $\frac{x}{\sin 40} = \frac{1}{\sin 40}$	$\frac{22}{n30} \rightarrow x = 28$	award 2/5 × ✓	1√1^^					
(b) $\frac{x}{\sin 30} = \frac{2}{\sin 30}$	$\frac{22}{n40} \rightarrow x = 17$	award 2/5 × 🗸	1√1^^					
2. eg $\frac{AB}{30} = \frac{22}{110}$	\rightarrow AB = 6 \rightarrow BD = 6 × sin40 = 3.9 or 4	award 2/5 ×××	<√1√1					

Question		n	Generic scheme	Illustrative scheme	Max mark
14.	(a)		• ¹ state vector	• $\mathbf{b} - \mathbf{a}$ or $-\mathbf{a} + \mathbf{b}$	1
Note	s:				
1. Fo	r the a	award	of $ullet^1$ accept $\mathbf{b} + -\mathbf{a}$.		
Com	monly	Obse	rved Responses:		
	(b)		• ² valid pathway	\bullet^2 b - a - $\frac{1}{2}$ a	2
				OR $\overrightarrow{WX} + \frac{1}{2}\overrightarrow{XY}$ or equivalent	
			• ³ Express WM in terms of a and b in simplest form	3	
Note	s:				
1. Co	orrect	answe	er with no working	award 2/2	
2. W	$\overline{X} + \overline{X}$	🕅 or 🕅	$\overrightarrow{WZ} + \overrightarrow{ZX} + \overrightarrow{XM}$ is not enough for the a	ward of \bullet^2	
			of • ² accept:		
(a) WZ-	+ ZX +	$\frac{1}{2}\overline{XY}$		
(b) WZ-	+ ZY +	$\frac{1}{2}\overrightarrow{YX}$		
4. Fo	r the a	award	of • ³ accept b + $-\frac{3}{2}$ a , b $-1\frac{1}{2}$ a or b	-1.5 a .	
5. Ar	iswer i	must l	pe consistent with part (a) except in	the case of Note 6.	
eg	(i) (a) a – b	b (b) $\mathbf{a} - \mathbf{b} + \frac{1}{2}\mathbf{a} = \frac{3}{2}\mathbf{a} - \mathbf{b}$ av	vard 0/1 in (a) × and award 2/2 in (b) \checkmark 1	√1
			Z Z	vard 0/1 in (a) × and award 1/2 in (b) × \checkmark	´1
	(iii) (a	a) a+	b (b) $a+b+\frac{1}{2}a=\frac{3}{2}a+b$ av	vard 0/1 in (a) × and award 2/2 in (b) \checkmark 1	√1
	(iv) (a	a) a+	b (b) $a+b-\frac{1}{2}a=\frac{1}{2}a+b$ av	vard 0/1 in (a) × and award 1/2 in (b) × ✓	´1
			part (b) which has been clearly four in part (b).	d independently of part (a) may gain full	or
eg (a) $\mathbf{a} - \mathbf{b}$ (b) $\mathbf{b} - \mathbf{a} - \frac{1}{2}\mathbf{a} = \mathbf{b} - \frac{3}{2}\mathbf{a}$ award 0/1 in (a) × and award 2/2 in (b) \checkmark					
Com	monly	Obse	rved Responses:		
		-	rts (a) and (b) award as follows:		
1. (a) $\mathbf{b} - \mathbf{a}$ (b) $\mathbf{b} - \mathbf{a} + \frac{1}{2}\mathbf{a} = \mathbf{b} - \frac{1}{2}\mathbf{a}$ award 1/1 in (a) \checkmark and award 1/2 in (b) $\times \checkmark 1$					

Question	Generic scheme	Illustrative scheme	Max mark				
15.	Method 1	Method 1	3				
	• ¹ correct fraction	• ¹ $\frac{15}{\pi \times 24}$ (= 0.198)					
	• ² know how to calculate sector area	• ² $\frac{15}{\pi \times 24} \times \pi \times 12^2$					
	• ³ calculate sector area	• 3 90(cm ²)					
	Method 2	Method 2					
	• ¹ start strategy for finding angle	• ¹ $15 = \frac{\text{angle}}{360} \times \pi \times 24$					
	• ² know how to calculate sector area	• ² $\frac{15}{\pi \times 24} \times 360 = \text{angle}$ $\rightarrow (\text{area} =) \frac{\text{angle}}{360} \times \pi \times 12^2$					
	• ³ calculate sector area	• 3 90(cm ²)					
Notes:							
1. Correct answ	ver without working	award 0/3					
	lable for simply calculating the angle at 360 = 71.6197	the centre of the sector award 1/3 ✓✓	2 ^				
	tions and inconsistancias in the use of π	provided there is evidence					
4. Do not penal	tions and inconsistencies in the use of π ise premature or incorrect rounding proenumber. However, see Note 5.	wided given answer rounds to 90 to the					
5. Where metho	od 2 is used, accept angle calculations r	ounded to the nearest degree					
e.g $\frac{15}{\pi \times 24}$	$\frac{1}{4} \times 360 = 72 \rightarrow \frac{72}{360} \times \pi \times 12^2 = 90.47$ or	$-90.5(cm^2)$ award 3/3					
available		valid strategy (eg cosine rule), $ullet^3$ is not					
	$<12^2 = 91.7(cm^2)$	award 0/3					
	e CORs 1 and 2 for special cases.						
-	ent incorrect working, the final mark is $\frac{15 \times \pi \times 12^2}{\pi \times 24} = 362(.38)$	not available award 2/3 🗸	×				
- π×24							

Quest	ion	Generic scheme	Illustrative scheme		Max mark			
15. (continued)								
Common	Commonly Observed Responses:							
1. $\frac{15}{\pi \times 12^2}$	1. $\frac{15}{\pi \times 12^2} \times 360 = 11.9 \rightarrow \frac{11.9}{360} \times \pi \times 24 = 2.5 (cm^2)$ award 2/3 × 1/1							
2. $\frac{15}{\pi \times 12^2}$	-×360 =	$= 11.9 \rightarrow \frac{11.9}{360} \times \pi \times 12^2 = 15 \text{ (cm}^2\text{)}$	award 1/	/3 <mark>××</mark>	√ 1			
3. (a) $\frac{15}{360}$	$\frac{5}{2} \times \pi \times 2$	$24 = 3.14(cm^2)$	award 0/	′3				
(b) $\frac{15}{360}$	$\frac{5}{0} \times \pi \times 1$	$12^2 = 18.8(cm^2)$	award 0/	'3				
16.		• ¹ valid substitution	• ¹ eg 3 $(1-\sin^2 x)-1$		2			
		• ² express in the form $a + b \sin^2 x^\circ$	\bullet^2 2-3sin ² x					
Notes:								
1. Correc	t answe	er without working	award 0	/2				
2. Do not	penali	se omission of degree signs.						
3. Accept	z −3 sin	² x + 2	award 2/	2				
4. Do not	accept	$\sin x^2$ eg 3(1- $\sin x^2$)-1 = 2-3 $\sin x^2$	award 1/	′2 ×√	´1			
5. ● ¹ is no	ot availa	able if there are no variables eg $3(1-s)$	\sin^2)-1 = 2-3 \sin^2 award 1/	′2 ×√	´1			
6. • ¹ is not available if the candidate simply states eg $\cos^2 x = 1 - \sin^2 x$ then proceeds no further.								
7. \bullet^2 is not available if there is invalid subsequent working.								
Commonly Observed Responses:								
1. (a) 3	$\cos^2 x$ –	$-\left(\sin^2 x + \cos^2 x\right) = 2\cos^2 x - \sin^2 x$	award 0/	′2 <mark>√2</mark>	^			
(b) 3	(b) $3\cos^2 x - (\sin^2 x + \cos^2 x) = 2\cos^2 x - \sin^2 x = 2(1 - \sin^2 x) - \sin^2 x$ award $1/2 \checkmark \uparrow$							

