

2019 Mathematics

National 5 - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

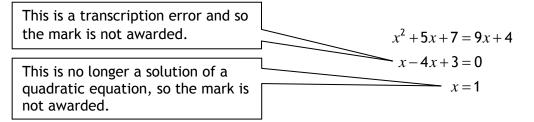
These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

Downloaded free from https://sqa.my/

General marking principles for National 5 Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.


For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example $6 \times 6 = 12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded. $x^2 + 5x + 7 = 9x + 4$ x - 4x + 3 = 0(x - 3)(x - 1) = 0x = 1 or 3

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
 - $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8*

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$ gains full credit

- repeated error within a question, but not between questions or papers
- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

For example:

In this case, award 3 marks.

Marking instructions for each question

	Question	Generic scheme	Illustrative scheme	Max mark
1.		• ¹ know how to increase by 15%	• ¹ ×1·15	3
		 know how to calculate number of packages after 3 years 	• ² 80 000 × 1 · 15 ³	
		• ³ evaluate	• ³ 121 670	
	t es: Correct ans	wer without working	award 3/3	
2.		ncorrect percentage is used, the working of awarding 2/3	must be followed through to give the	
	eg 80 000×	$0.15^3 = 270$	award 2/3 ×√√	
3.		ncorrect power (≥ 2) is used, the workin of awarding 2/3	g must be followed through to give the	
	eg 80 000×	$1.15^2 = 105\ 800$, $80\ 000 \times 1.15^4 = 139\ 920$	•5) or 139 921 award 2/3 √×√	
4.	Where divis (a) along w	iion is used ith 1·15, ● ¹ is not available		
		$000 \div 1.15^3 = 52601(.2)$	award 2/3 ×√√	
		ith an incorrect percentage, \bullet^1 and \bullet^2 ar $000 \div 0.85^3 = 130266(.6)$ or 130266	e not available award 1/3 ××√	
Со	nmonly obs	erved responses:		
1.	80 000×1·0	115 ³ = 83654(·27)	award 2/3 ×√√	
2.	80 000×0·	$85^3 = 49130$	award 2/3 ×√√	
3.	80 000×1·1	5 = 92 000	award 1/3 √××	
4.	80 000 × 1·1	5 × 3 = 276 000	award 1/3 √××	
5.	80 000 × 0·1	$5 = 12\ 000 \rightarrow 80\ 000 + 3 \times 12\ 000 = 116\ 000$	award 1/3 √××	
6.	80 000 × 0·	5×3 = 36 000	award 0/3	

Question	Generic scheme	Illustrative scheme	Max mark	
2.	• ¹ start process	• ¹ $6^2 + 27^2 + (-18)^2$	2	
	• ² consistent solution	• ² 33		
	ver without working, $27^2 + 18^2$ for the award of \bullet^1	award 2/2		
3. For a solution of $21(\sqrt{6^2 + 27^2 - 18^2})$, with or without working, award 1/2				
4. For eg $\sqrt{6^2}$	$\overline{(-(-18)^2)^2} = \sqrt{360} = 18.97$ or $6\sqrt{10}$	award 0/2		
5. For eg $\frac{\sqrt{6^2}}{3}$	$\frac{\overline{+27^2 + (-18)^2}}{2 \times 6 \times 27} = \frac{33}{324} = \frac{11}{108} = 0.1$	award 0/2		
Commonly Obse No working nec	erved Responses: essary			
1. √1089 or 108	39	award 1/2 √×		
3.	• ¹ correct substitution into area of triangle formula	• ¹ $\frac{1}{2} \times 45 \times 70 \times \sin 129$	2	
	• ² calculate area	• ² 1224(·004)(cm ²)		
Notes: 1. Correct answ	ver without working	award 2/2		
2. For 45×70>	<sin129 2448(·0…)<="" =="" td=""><td>award 1/2 ×√</td><td></td></sin129>	award 1/2 ×√		
3. Inappropriat in Qu 3, 7, 1	e use of RAD or GRAD should only be pe 1, 14 or 19	enalised once		
(a) \pm 304·7(RAD) [no working necessary] award 1/2 \checkmark ×				
 (b) 1414·3 (GRAD) [no working necessary] award 1/2 ✓× 4. Where cosine rule is used award 0/2 				
4. Where cosine rule is used award 0/2 Commonly observed responses:				
-	sin129 = $\sqrt{1224 \cdot \ldots}$ = 34 · 9	award 1/2		

Ques	stion		Generic scheme	Illustrative scheme	Max mark	
4.			• ¹ correct method	• ¹ $0.08 \times 3.6 \times 10^{-6}$ or equivalent	2	
			• ² answer	• ² 2.88×10 ⁻⁷ (kg)		
-	Notes:1. Correct answer without workingaward 2/2					
2. A	2. Accept $2 \cdot 9 \times 10^{-7}$ (no working necessary) award 2/2					
3. A	ccept	100%	$= 3 \cdot 6 \times 10^{-6} \rightarrow 1\% = \dots \rightarrow 8\% = \dots$ for the	he award of \bullet^1		
4. F	or 0.	00000	0288 or $\frac{9}{31250\ 000}$ (no working necess	ary) award 1/2 √×		
5. F	or (0	•08×3	$3 \cdot 6 = 0 \cdot 288 \rightarrow 0 \cdot 288 \times 10^{-6}$ (no working	g necessary) award 1/2 √×		
			e for correctly carrying out calculation a change in the power of 10; the answ		ientific	
Com	monly	obse	rved responses:			
1.	0.08	×3.6	$\times 10^{-6} = 2 \cdot 8 \times 10^{-7}$	award 1/2 √×		
2.	2. $0.08 \times 3600000 = 2.88 \times 10^5$ award $1/2 \times \sqrt{2}$					
3.	3•6×	: 10 ⁻⁶ -	$\div 8 = 4 \cdot 5 \times 10^{-7}$	award 1/2 ×√		
. ,			$\div 8\% = 4 \cdot 5 \times 10^{-5}$	award 1/2 ×√		
(b)	3.6 ⇒	< 10 ⁻⁶	$\div 8\% = 4 \cdot 5 \times 10^{-7}$	award 0/2		

Question		Generic Scheme	Illustra	tive Scheme	Max Mark	
5.		• ¹ state coordinates of A	•1 (3,0,0)		2	
		• ² state coordinates of B	• ² (3,3,8)			
ar	ne maximun	n mark available is 1/2 where brac viven in component form	kets are omitted and	/or		
) and (3,3,8) 0) and A(3,3,8)		award 2/2 award 1/2		
3. Fc	or eg (0,0,3)	and (8,3,3) [repeated error]		award 1/2		
	4. • ² is available for answers of the form $A(x,0,0) \rightarrow B(x,x,8)$ See COR 2.					
(a) Where bo b) Where or (i) award	ven in two dimensions oth answers are given in 2D awar ne answer is given in 2D and one ir 1/2 for the correct answer through mark is not available	1 3D eg (3,0) and (3,3,8)			
Com 1. (a	$\begin{pmatrix} 3 \end{pmatrix}$	erved responses: $\begin{pmatrix} 3 \\ 3 \\ 8 \end{pmatrix}$		award 1/2 ×√		
(b) 0 and	3 3 8		award 1/2 ×√		
) (6,0,0) an) (6,0,0) an			award 1/2 ×√ award 0/2		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
6.		• ¹ correct substitution into quadratic formula	• ¹ $\frac{-9\pm\sqrt{9^2-4\times3\times(-2)}}{2\times3}$	3
		• ² evaluate discriminant	• ² 105 (stated or implied by • ³)	
		• ³ calculate both roots correct to one decimal place	• ³ -3·2, 0·2	
Note 1. (ver without working	award 0/3	
2. •	^{,3} is only ava	ailable when $b^2 - 4ac > 0$, and the roo	ts require rounding.	
	monly observed by $(b^2 - 4a)$	erved responses: c)	award 1/3 ×√×	
2	$\frac{-9\pm\sqrt{9^2-2}}{2\times}$	$\frac{1}{3} \times (-2) = \frac{-9 \pm \sqrt{57}}{6} = -2 \cdot 8, -0 \cdot 2$	award 2/3 √×√	
3	$\frac{-9\pm\sqrt{9^2-2}}{2\times3}$	$\frac{1}{1} \times 3 \times 2}{6} = \frac{-9 \pm \sqrt{57}}{6} = -2 \cdot 8, -0 \cdot 2$	award 1/3 ××√	
4.	$\frac{-9\pm\sqrt{9^2-2}}{2}$	$\frac{4 \times 3 \times (-2)}{\times 3} = \frac{-9 \pm \sqrt{105}}{6} = -10.7, -$	7·3 award 2/3 √√×	
5	$-9\frac{\pm\sqrt{9^2-4}}{2}$	$\frac{1}{1} \frac{1}{1} \frac{1}$	•3 award 2/3 ×√√	

(Question	Generic Scheme	Illustrative Scheme	Max Mark
7.		• ¹ correct substitution into cosine rule to find angle Z	• 1 $(\cos Z =)$ $\frac{7 \cdot 2^2 + 8 \cdot 5^2 - 6 \cdot 3^2}{2 \times 7 \cdot 2 \times 8 \cdot 5}$	3
		• ² evaluate	• ² $(\cos Z =)\frac{84 \cdot 4}{122 \cdot 4} \left(= \frac{211}{306} = 0.689 \right)$	
		• ³ calculate angle	• 3 (Z =) 46 · 406	
Not	es:			
1.	Correct a	nswer without working award 0/3		
2.	 Where two or three more angles are calculated correctly (a) all three angles are calculated correctly; 46·4 need not be identified (b) two angles are calculated correctly and 46·4 has been clearly identified (c) two angles are calculated correctly and 46·4 has NOT been clearly identified (c) two angles are calculated correctly and 46·4 has NOT been award 3/3 			
3.	Do not pe	nalise omission of degrees sign		
4.	Disregard	errors due to premature rounding provide	ed there is evidence	
5.	(a) 0·81.	iate use of RAD or GRAD should only be pe (RAD) (GRAD)	enalised once in Qu 3, 7, 11, 14 or 19	
Cor	nmonly of	oserved responses:		
1.	$\frac{8\cdot 5^2 + 6\cdot 3}{2\times 8\cdot 5}$	$\frac{3^2 - 7 \cdot 2^2}{8 \times 6 \cdot 3} \left(= \frac{60 \cdot 1}{107 \cdot 1} = \frac{601}{1071} = 0 \cdot 561 \right) \to 51$	5·86 award 2/3 ×√	
2.	$\frac{7\cdot 2^2 + 6\cdot 2}{2\times 7\cdot 2}$	$\frac{3^2 - 8 \cdot 5^2}{2 \times 6 \cdot 3} \left(= \frac{19 \cdot 28}{90 \cdot 72} = \frac{241}{1134} = 0 \cdot 212 \dots \right) \rightarrow 7$	77·72 award 2/3 ×√	✓
3.	(cosZ =)-	$\frac{7 \cdot 2^2 + 8 \cdot 5^2 - 6 \cdot 3^2}{2 \times 7 \cdot 2 \times 8 \cdot 5} = \sqrt{0 \cdot 689 \dots} \rightarrow Z = 33 \cdot 8$	award 2/3 √×	≪√

Q	uestion	Generic Scheme	Illustrative Scheme	Max Mark
8.		• ¹ correct substitution into formula for volume of sphere	$\bullet^1 \frac{4}{3} \times \pi \times 12^3$	5
		• ² correct substitution into formula for volume of cylinder	• ² $\pi \times 12^2 \times 58$	
		• ³ know to add volume of hemisphere to volume of cylinder	$\bullet^3 \frac{1}{2} \times \frac{4}{3} \times \pi \times 12^3 + \pi \times 12^2 \times 58$	
		• ⁴ all calculations correct (must involve the sum or difference of two different calculations both involving π)	• ${}^{4}(3619\cdot1+26238\cdot5)=29857\cdot$	
		 ⁵ round final answer to 3 significant figures and state correct units 	• ⁵ 29 900 cm ³	

	Question	Generic scheme	Illustrative scheme	Max mark
	tes: Correct answ	ver without working	award 0/5	
2.	Accept 29 90	0 ml or 29·9 litres		
	Accept variation eg $\frac{1}{2} \times \frac{4}{3} \times 3$.	tions in π 14 × 12 ³ + 3 · 14 × 12 ² × 58 = 29842 · 56 =	29800 cm ³	
4.	h	lable if final answer is given in terms of $^3 + \pi \times 12^2 \times 58 = 1152\pi + 8352\pi = 9504\pi c$		
5.	In awarding ((a) Intermed	⁵ iate calculations need not be shown		
	eg $\frac{1}{2} \times \frac{2}{3}$	$\frac{4}{3} \times \pi \times 12^3 + \pi \times 12^2 \times 58 = 29900 \text{cm}^3$	award 5/5	
	at least f	termediate calculations are shown, the our significant figures		
	eg 3619	•1 + 26238•5 = 3620+26200 = 298	$20 = 29800 \mathrm{cm}^3$ award $4/5 \sqrt{\sqrt{x}}$	
	-	rved responses: $4^3 + \pi \times 24^2 \times 58 = 134000 \text{cm}^3$	award 4/5 ×√√√√	
2.	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 24$	$4^2 + \pi \times 24^2 \times 58 = 106000\text{cm}^3$	award 4/5 ×√√√√	
3.	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 12$	$2^3 + \pi \times 12^2 \times 70 = 35300\text{cm}^3$	award 4/5 🗸 × ✓ ✓ ✓	
4.	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 24$	$4^3 + \pi \times 24^2 \times 70 = 156000\text{cm}^3$	award 3/5 ××√√√	
5.	$\frac{4}{3}$ × π × 12 ³ +	$\pi \times 12^2 \times 58 = 33500 \text{cm}^3$	award 4/5 🗸 🗸 🗸	
6.	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 12$	$2^3 + \pi \times 24 \times 58 = 7990 \text{cm}^3$	award 4/5 🗸 × 🗸 🗸	
7.	$\frac{4}{3}$ × π × 12 ³ =	7240 cm ³	award 2/5 √×××√	
8.	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 12$	$2^3 = 3620 \text{cm}^3$	award 2/5 √×××√	
9.	$\pi \times 12^2 \times 58 =$	² 26 200 cm ³	award 2/5 ×√××√	

	Question	Generic scheme		Illustrative scheme	Max mark
9.		• ¹ know that $102 \cdot 5\% = \text{\pounds}977 \cdot 85$	• ¹	102·5(%) = 977·85	3
		• ² begin valid strategy	• ²	977 • 85 ÷ 102 • 5 or equivalent	
		• ³ complete calculation within valid strategy	• ³	(£)23·85	
Not 1.	-	ver without working award 3/3			
2.	2·5% of 977· (a) and evid (b) otherwis	ence of • ¹		award 1/3 √×× award 0/3	
3.	97.5% of 977 (a) and evid (b) otherwis	ence of • ¹		award 1/3 √×× award 0/3	
	$\frac{977 \cdot 85}{1 \cdot 025} = 95$	erved responses: 4		award 2/3 √√×	
2.	(a) 97·5% =	$977.85 \rightarrow \frac{977.85}{0.975} = 1002.92$		award 1/3 ×√×	
	(b) $\frac{977 \cdot 85}{0 \cdot 975}$ =	₌1002 · 92		award 0/3	
3.	(a) $2 \cdot 5\% = 97$	$77.85 \rightarrow \frac{977.85}{0.025} = 39114$		award 1/3 ×√×	
	(b) $\frac{977 \cdot 85}{0 \cdot 025}$ =	=39114		award 0/3	

Q	uestion	1	Generic scheme	Illustrative scheme	Max mark	
10.			• ¹ correct bracket with square	• $(x+5)^2 \dots$ • $(x5)^2 - 40$	2	
			• ² complete process	• ² $(x5)^2 - 40$		
	Notes: 1. Correct answer without working award 2/2					
2. A	2. Answer for \bullet^2 must be consistent with \bullet^1					
e	eg (a) (.	x±1	$0)^{2}-115$	award 1/2 ×√		
	(b) ($(x\pm 1)$	$0)^{2}-40$	award 0/2		
Com	monly o	obse	rved responses:			
No w	orking	nece	essary.			
1. A	ward 2/	/2 fo	r (a) $(x+5)^2 + (-40) \operatorname{or} (x+5)^2 + -40$			
			(b) $(x+5)(x+5)-40$			
2. A	ward 1/	/2 × v	\checkmark for (a) $(x\pm5)-40$			
			(b) $(x^2 \pm 5) - 40$			
			(c) $(x^2 \pm 5)^2 - 40$			
			(d) $(x \pm 5x)^2 - 40$			

Q	uestion	Generic scheme	Illustrative scheme	Max mark
11.		Method 1	Method 1	4
		 use perimeter to find length of BC and use a valid strategy (Converse of Pythagoras' Theorem) 	• ¹ eg $600^2 + 250^2$ and 650^2	
		• ² evaluate	• ² $600^2 + 250^2 = 422500$ and $650^2 = 422500$	
		• ³ explicit comparison	• ³ $600^2 + 250^2 = 650^2$	
		• ⁴ conclusion with valid reason	• ⁴ Yes, as angle is a right angle.	
		Method 2	Method 2	
		• ¹ use perimeter to find length of BC and use a valid strategy (correct substitution into cosine rule)	• ¹ $(\cos B =) \frac{600^2 + 250^2 - 650^2}{2 \times 600 \times 250}$	
		• ² evaluate	• ² $(\cos B =)0$	
		\bullet^3 calculate angle	• ³ (B=)90 [stated explicitly]	
		• ⁴ conclusion with reason	• ⁴ Yes, as angle is a right angle	

	Question	Generic se	cheme	Illustrative sc	heme	Max mark
	tes:					
1.	For method 1	there must be an ex	plicit compariso	n stated for the award of	• 3	
2.	The conclusion	on must include a refe	erence to 90 $^\circ$ or	a right angle.		
3.	$650^2 = 60$ 422 500 =	ndidate starts by stat $10^2 + 250^2 \times \bullet^1$ = 422 500 $\checkmark \bullet^2$'s right-angled $\checkmark \bullet^4$	ו ³ (marks not a (evaluation)		are not available award 2/4 ×√	
	(b) Where ca	ndidate starts by stat		angle is right-angled the	en $650^2 = 600^2 +$	- 250 ²
	lf triangl	available e is right-angled the = 422 500 å2		$250^2 \checkmark \bullet^1 \times \bullet^3 (\bullet^3 \text{ not av})$	/ailable)	
	Yes		```	son implicit in $\checkmark \bullet^1$)	award 3/4 √√	́×√
4.	. ,	ere is no working to in using the perimeter.	ndicate how 250	has been obtained, then	assume it has b	een
	• •	orking shows that 250 able; apply the MIs fo		ed by the use of Pythagor 2 , \bullet^3 and \bullet^4	ras' theorem, ●	¹ is
5.	(a) 1·57 (e use of RAD or GRAD RAD), no, angle is not D), no, angle is not a	a right angle	penalised once in Qu 3, 7,	11, 14 or 19	
	Variation on <i>N</i> eg $600^{2}+250$ $\sqrt{422500}$ $600^{2}+250$ Yes, as an	= 650 $p^2 = 650^2$ Igle is a right angle				
2.	$(\cos A =)\frac{60}{2}$	$\frac{12}{2 \times 600 \times 650} = \frac{12}{13}$	$A = 22 \cdot 6 \dots$		award 2/4	×√√ ×
3.	If triangle	is right-angled then	$BC^2 = 650^2 - 600$	$)^2 \checkmark \bullet^1$		
	BC = 250		√•² (evalua	tion)		
	1500 - 650 -	-600 = 250 = BC	with E	t comparison of BC obtain C obtained from perimete	er)	goras'
	Yes		å ⁴ (conclu	sion; reason implicit in \checkmark	• ¹) award 4/4	
4.	$BC^{2} = 650^{2}$	-600^{2}	×∙¹ (mark n	ot available)		
	BC = 250		$✓ •^2$ (evaluat	tion)		
	1500-650	-600 = 250 = BC		comparison of BC obtain Cobtained from perimete		oras'
	Yes, as ang	le is a right angle		ion and reason)		×√√√

Q	uestion	Generic scheme	Illustrative scheme	Max mark
12.	(a)	Method 1 • ¹ linear scale factor	• ¹ $\frac{30}{50}$	3
		• ² know to multiply area by square of linear scale factor	• ² 2750 × $\left(\frac{30}{50}\right)^2$	
		• ³ find area of smaller sector (calculation must include a power of the linear scale factor)	• ³ 990 (cm ²)	
		Method 2 • ¹ linear scale factor	• ¹ $\frac{50}{30}$	
		• ² know to divide area by square of linear scale factor	• ² 2750 ÷ $\left(\frac{50}{30}\right)^2$	
		• ³ find area of smaller sector (calculation must include a power of the linear scale factor)	• ³ 990 (cm ²)	
		Method 3 [Combination of (b) and (a)] • ⁴ • ⁵ • ⁶ calculate size of angle ACB (see part (b) below)	• ⁴ • ⁵ • ⁶ 126(·05)	
		• ¹ appropriate fraction	• ¹ $\frac{126(.05)}{360}$	
		• ² consistent substitution into area of sector formula	$\bullet^2 \frac{126(\cdot05)}{360} \times \pi \times 30^2$	
		• ³ calculate area of smaller sector	• ³ 990 (cm ²)	

Qu	lestion	Generic scheme	Illustrative scheme	Max mark
Notes	•	ver without working	award 0/3.	
	is not avail g 2750 — 99	able where there is invalid subsequen 90 = 1760	t working award 2/3 √√×	
3. Me	ethod 3: A	Accept $\frac{126}{360} \times \pi \times 30^2 = 989.6(0)$		
Comm	nonly obse	rved responses:		
1. 27	$750 \times \frac{30}{50} = 1$	650	award 1/3 √××	
	$750 \times \left(\frac{30}{50}\right)^3$		award 2/3 √×√	
3. 27	$750^2 \times \frac{30}{50} =$	4537500	award 1/3 √××	
4. 27	$750 \times \left(\frac{50}{30}\right)^2$	$= 7638(\cdot 8)$ or 7639	award 2/3 √×√	
5. 27	$750 \times \left(\frac{50}{30}\right)^2$	$= 2750 \times 1.67^2 = 7669(.4)$	award 1/3 √××	
		ounding leads to inaccurate answer)		
6. 27	$750 \div \left(\frac{50}{30}\right)^2$	$^{2} = 2750 \div 1.67^{2} = 986(.0)$	award 2/3 √√×	
(P	remature re	ounding leads to inaccurate answer)		

Q	Question		Generic scheme		Illustrative scheme	Max mark
12.	(b)		Method 1 • ⁴ expression for sector area	• ⁴	$\frac{\text{angle}}{360} \times \pi \times 50^2$	3
			• ⁵ know how to find angle	• ⁵	$\frac{2750\times360}{\pi\times50^2}$	
			• ⁶ calculate angle	• ⁶	126(·05)	
			 Method 2 ⁴ sector area: circle area ratio 	• ⁴	$\frac{2750}{\pi \times 50^2}$ (=0.35)	
			• ⁵ know how to find angle	• ⁵	$\frac{2750\times360}{\pi\times50^2}$	
			• ⁶ calculate angle	• ⁶	126(·05)	

	Question	Generic scheme	Illustrative scheme	Max mark	
	o tes: Correct answ	ver without working award 0/3			
2.	Alternative Method 1: $\frac{\text{angle}}{360} \times \pi \times 30^2 \rightarrow \frac{990 \times 360}{\pi \times 30^2} = 126(\cdot 05)$				
3.	Alternative Method 2: $\frac{990}{\pi \times 30^2} \rightarrow \frac{990 \times 360}{\pi \times 30^2} = 126(.05)$				
4.	•	of the above alternative methods are us ough with possibility of awarding 3/3 fo	• • • • •	nust be	
5.	Accept varia	tions in π			
6.	Premature ro	bunding of $\frac{2750}{\pi \times 50^2}$ must be to at least 2	decimal places		
7.		d of \bullet^6 , the calculation must involve a constraint on must include a sector area, π , 360 and			
Co	mmonly obse	rved responses:			
		(b) $\frac{1650 \times 360}{\pi \times 30^2} = 210(.08)$	award 3/3		
2.	(a) 1650 $ ightarrow$	(b) $\frac{1650 \times 360}{\pi \times 50^2} = 75()$	award 2/3 × \checkmark \checkmark		
3.	$\frac{2750 \times 360}{\pi \times 100^2} =$	· 31·5(1)	award 2/3 ×√√		
4.	$\frac{2750\times360}{\pi\times100} =$	3151(·2)	award 2/3 ×√√		
5.		$\sqrt{3151(\cdot 2)} = 56(\cdot 1)$	award 1/3 ××√		
6.	$\frac{2750}{360} \times \pi \times 50$	$h^2 = 59995(\cdot 6)$	award 0/3		

Q	uestion	Generic scheme Illustrative scheme	Max mark		
13.		• ¹ correct substitution into gradient formula • ¹ $\frac{4p^2-9}{4p-6}$ or $\frac{9-4p^2}{6-4p}$	3		
		• ² factorise using difference of two squares $(2p+3)(2p-3)$ • ² or $(3+2p)(3-2p)$			
		• ³ factorise using common factor and simplify $\frac{(2p+3)(2p-3)}{2(2p-3)} = \frac{2p+3}{2}$ • ³ or $\frac{(3+2p)(3-2p)}{2(3-2p)} = \frac{3+2p}{2}$			
	orrect a	nswer without working award 0/3.			
2. A	ccept p	$2+\frac{3}{2}$ for \bullet^3			
	3. For subsequent incorrect working • ³ is not available eg $\frac{2'p+3}{2'} = p+3$ award 2/3 $\checkmark \checkmark \times$				
Com	commonly observed responses:				

	Question	Generic scheme	Illustrative scheme	Max mark			
14.		• ¹ rearrange equation	• ¹ $\cos x = -\frac{1}{5}$ or equivalent	3			
		• ² find one value of x	• ² $101 \cdot 5(3)$ • ³ $258 \cdot 4(6)$				
		• ³ find second value of x	• ³ 258·4(6)				
	tes: Correct answ	ver without working	award 0/3.				
2.	Accept (a) 1	02 and 258 (b) 101·6 (180–78·4) and 2	58·4 (180+78·4) with valid working.				
3.	Do not penal	ise omission of degrees sign.					
		then \bullet^2 and \bullet^3 are only available for cons	istent 2 nd and 3 rd quadrant angles				
	eg $\cos x = -$	$\frac{1}{5} \rightarrow$ (a) 78.5, 101.5	award 2/3 √×√				
	(b) 78·5, 258 (c) 78·5, 281		award 2/3 √×√ award 1/3 √××				
5.	If $\cos x > 0t$ angle	hen \bullet^2 is not available (working eased)	but \bullet^3 is available for consistent 4th qu	uadrant			
	eg $\cos x = \frac{1}{5}$	→ (a) 78·5, 101·5	award 0/3				
	(b) 78.5, 258 (c) 78.5, 281		award 0/3 award 1/3 ××√				
	(d) 101.5, 25		award 0/3				
6.		arly included as one of the final answe	rs then award marks as follows:				
	eg $\cos x = -$	$\frac{1}{5} \rightarrow$ (a) 78.5, 101.5, 258.5	award $2/3 \checkmark \times \checkmark$				
		(b) 78·5, 101·5, 281·5 (c) 78·5, 101·5, 258·5, 281·5	award 1/3 √×× award 1/3 √××				
7.		iate use of RAD should only be penalise	ed once in Qu 3, 7, 11, 14 or 19				
		= 1·3… → 178·6… , 181·3…					
	(b) However,	, for $\cos^{-1}\left(-\frac{1}{5}\right) = 1.7 \rightarrow 1.7$, 358	•3 award $1/3 \checkmark \times \times$ since the answe	rs are			
		nd 3 rd quadrant angles					
8.		e use of GRAD should only be penalised	l once in Qu 3, 7, 11, 14 or 19				
		$=$ 87·1 \rightarrow 92·8 , 267·1					
	(b) $\cos^{-1}\left(-\frac{1}{5}\right) = 112 \cdot 8 \rightarrow 112 \cdot 8 , 247 \cdot 2$						
	-	erved responses:					
1.	$\cos x = \frac{3}{5} \rightarrow$	53·1, 306·9 award 1/3 ××√					

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
15.			• ¹ correct denominator	•1 $(x-2)(x+5)$	3
			• ² correct numerator	• ² $4(x+5)-3(x-2)$	
			• ³ express in simplest form (remove brackets in numerator and collect like terms)	• ³ $\frac{x+26}{(x-2)(x+5)}$	

Notes:

1. Correct answer without working award 3/3

2. Accept
$$\frac{4(x+5)}{(x-2)(x+5)} - \frac{3(x-2)}{(x-2)(x+5)}$$
 for the award of \bullet^1 and \bullet^2

- 3. Do not accept x-2(x+5) or (x-2)x+5 for the award of \bullet^1 unless the correct expansion appears in the final answer
- 4. Where a candidate chooses to expand the brackets in the denominator, then \bullet^3 is only available for a correct expansion **eg**

(a)
$$\frac{4(x+5)}{(x-2)(x+5)} - \frac{3(x-2)}{(x-2)(x+5)} = \frac{x+26}{x^2+3x-10}$$
 award 3/3
(b) $\frac{4(x+5)}{(x-2)(x+5)} - \frac{3(x-2)}{(x-2)(x+5)} = \frac{x+26}{x^2-10}$ award 2/3 $\checkmark \checkmark \times$
(c) $\frac{4(x+5)}{x^2-10} - \frac{3(x-2)}{x^2-10} = \frac{x+26}{x^2-10}$ award 2/3 $\times \checkmark \checkmark$

5. For subsequent incorrect working, \bullet^3 is not available eg

	$\frac{x+26}{x^2+3x-10} = \frac{26}{x^2-7}$	award 2/3 √√×
Со	mmonly observed responses:	
1.	$\frac{4x+20}{(x-2)(x+5)} - \frac{3x-6}{(x-2)(x+5)} = \frac{x+14}{(x-2)(x+5)}$	award 2/3 √√×
2.	$\frac{4x+5}{(x-2)(x+5)} - \frac{3x-2}{(x-2)(x+5)} = \frac{x+7}{(x-2)(x+5)}$	award 1/3 √××
	(x-2)(x+5) $(x-2)(x+5)$ $(x-2)(x+5)$	

Question		Generic scheme	Illustrative scheme	Max mark	
16.		• ¹ apply $a^m \times ka^n = ka^{m+n}$	• ¹ eg $a^4 \times 3a = 3a^5$	3	
		• ² evidence of $\sqrt{a} = a^{\frac{1}{2}}$	$\bullet^2 a^{\frac{1}{2}}$		
		• ³ complete simplification	• $3a^{\frac{9}{2}}$		
Not 1.	-	swer without working award 3/3.			
2.	Accept 3 <i>a</i>	$\frac{4^{\frac{1}{2}}}{2}$ or $3a^{4\cdot 5}$ (as bad form).			
	(a) Accept (b) Do not	$3\sqrt{a^9}$. penalise $3a^{\frac{9}{2}} = 3\sqrt[9]{a^2}$.			
	4. Where candidate starts by rationalising the denominator, \bullet^1 is available for eg (i) obtaining $3a^5$ as follows: $\frac{a^4 \times 3a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = \frac{3a^5 \times \sqrt{a}}{a}$ (ii) obtaining $3a^4$ as follows: $\frac{a^4 \times 3a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = 3a^4 \times \sqrt{a}$ or $a^4 \times 3\sqrt{a}$				
	5. BEWARE • ¹ is not available where $3a^5$ has been obtained incorrectly eg $\frac{a^4 \times 3a}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}} = \frac{a^4 \times 3a \times \sqrt{a}}{a} = \frac{\sqrt{3a^5}}{a}$				
Con	nmonly ob	served responses:			

Question		Generic scheme	Illustrative scheme		Max mark
17.		• ¹ expand brackets	• ¹	$\sin^2 x + \sin x \cos x + \cos x \sin x + \cos^2 x$	2
		• ² simplify expression	• ²	$1+2\sin x\cos x$	
Notes: 1. Corre	ct ansv	ver without working		award 0/2	
2. Do no	t penal	ise omission of degrees sign			
3. Accep	ot 1+si	n2 <i>x</i>			
4. Accep	ot (sin:	$(x)^2$ and $(\cos x)^2$ or $\sin x \sin x$ and $\cos x$	ксо	S X	
		$x^{2} + 2\sin x \cos x + (\cos x)^{2} = 1 + 2\sin x \cos x$		award 2/2	
(b)	sin x s	$in x + 2 \sin x \cos x + \cos x \cos x = 1 + 2 \sin x$	xcc	award 2/2	
5. Do no	t accep	ot $\sin x^2$ and $\cos x^2$.			
eg sin	$x^{2} + 2$	$\sin x \cos x + \cos x^2 = 1 + 2\sin x \cos x$		award 1/2 ×√	
		lable if there are no variables $n\cos + \cos^2 = 1 + 2\sin \cos^2$		award 1/2 ×√	
7. • ² is n	iot avai	ilable if there is invalid subsequent wor	kin	3	
• 1 $\left(\frac{o}{h}\right)$	8. Alternative acceptable strategy: • $\left(\frac{o}{h}\right)^2 + \left(\frac{o}{h}\right)\left(\frac{a}{h}\right) + \left(\frac{a}{h}\right)\left(\frac{o}{h}\right) + \left(\frac{a}{h}\right)^2$ · $\left(\frac{o}{h}\right)^2 - \left(\frac{o}{h}\right)\left(\frac{a}{h}\right) + \left(\frac{a}{h}\right)^2$				
• ² $\left(\frac{o}{h}\right)^2 + 2\left(\frac{o}{h}\right)\left(\frac{a}{h}\right) + \left(\frac{a}{h}\right)^2 = 1 + 2\sin x \cos x$ award 2/2					
Commonly observed responses: 1. $(\sin x + \cos x)^2 = \sin^2 x + \cos^2 x = 1$ award 0/2					
2. $(\sin x - 1)$	$+\cos x)^{\frac{1}{2}}$	$x^{2} = \sin^{2} x + \sin x \cos x + \cos^{2} x = 1 + \sin x \cos^{2} x$	$\cos x$	award 1/2 ×√	

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
18.		• ¹ marshal facts and recognise right-angled triangle	• ¹ 7.5 r 7.5	4		
		• ² consistent Pythagoras statement	• ² $7 \cdot 5^2 + 7 \cdot 5^2$			
		• ³ calculate radius of larger circle	• ³ 10·6			
		• ⁴ calculate CD	• ⁴ 25·6(cm)			
Note 1. C	- •	ver without working	award 0/4.			
		the award of \bullet^1 and \bullet^2 .	t right angle indicated, accept $7{\cdot}5^2$ +	7.5^2 as		
	EWARE /here a diag	ram is shown, working must be consiste	ent with the diagram.			
4. •	² and \bullet^3 are	available for a valid trigonometric met	hod.			
5. •	³ is available	e for a consistent calculation of a lengt	h using Pythagoras or trigonometry			
	•	ailable following a Pythagoras (or trig lving 7·5 or 15.	gonometric) calculation within a right	-angled		
7. D	isregard er	rors due to premature rounding provide	d there is evidence.			
1. [" (; ()	Commonly observed responses:. [Triangle SBT with SB = ST = 15] $r^2 = 15^2 + 15^2 \rightarrow r = 21 \cdot 2 \rightarrow CD = 51 \cdot 2$ (a) working inconsistent with correct diagram(b) working consistent with candidate's diagram(c) no diagramaward $2/4 \times \sqrt{\sqrt{2}}$ award $2/4 \times \sqrt{\sqrt{2}}$					
-	[Square with side AB] $d^2 = 15^2 + 15^2 \rightarrow r = 10.6 \rightarrow CD = 25.6$ If consistent with a correct diagram award 4/4; otherwise apply COR 1 MIs					
-	-	B] $r^2 + r^2 = 15^2 \rightarrow r = 10.6 \rightarrow \text{CD} = 25.6$ d Note 2 becomes accept $r^2 + r^2 = 15^2 \text{c}$	as evidence for the award of \bullet^1 and \bullet^2			

Question		Generic scheme		ax ark
19.		Method 1 • ¹ correct substitution into sine rule	• $\frac{BK}{\sin 34} = \frac{350}{\sin 94}$	5
		• ² re-arrange formula	$\bullet^2 BK = \frac{350\sin 34}{\sin 94}$	
		• ³ calculate BK	• ³ 196(·195)	
		• ⁴ consistent substitution into appropriate trig formula	• ⁴ $\sin 52 = \frac{h}{196} \text{ or } \frac{h}{\sin 52} = \frac{196}{\sin 90}$	
		• ⁵ calculate height using trigonometry	• ⁵ 154·6 (m)	
		Method 2 • ¹ correct substitution into sine rule	$\bullet^1 \frac{BM}{\sin 52} = \frac{350}{\sin 94}$	
		• ² re-arrange formula	$\bullet^2 BM = \frac{350\sin 52}{\sin 94}$	
		• ³ calculate BM	• ³ 276(·477)	
		 ⁴ consistent substitution into appropriate trig formula 	• ⁴ $\sin 34 = \frac{h}{276} \text{ or } \frac{h}{\sin 34} = \frac{276}{\sin 90}$	
		• ⁵ calculate height using trigonometry	• ⁵ 154·6 (m)	

	Question	Generic scheme	Illustrative scheme	Max mark			
	Notes:1. Correct answer without workingaward 0/5.						
2.	Do not penalise omission of degrees signs.						
3.	Disregard errors due to premature rounding provided there is evidence. However, do not accept sin34, sin52 or sin94 rounded to less than 3 decimal places. eg $BM = \frac{350 \sin 52}{\sin 94} = \frac{275 \cdot 8}{0 \cdot 99} = 275 \cdot 59 \rightarrow h = 275 \cdot 59 \sin 34 = 155 \cdot 8$ award $4/5 \checkmark \checkmark \checkmark \checkmark$						
4.	Where both BK and BM are calculated but one is calculated incorrectly, if there is (a) further working then apply the MIs based on the length used to calculate the height (b) no further working disregard incorrect length ie award 3/5						
5.	Alternative s	trategy for \bullet^4 and \bullet^5					
	2	$ \langle 350 \times 196(\cdot 195) \times \sin 52(= 27055 \cdot) $					
6.	Inappropriate use of GRAD or RAD should only be penalised once in Qu 3, 7, 11, 14 or 19 (a) $130 \cdot 4$ (GRAD)						
	. ,	. (RAD); ● ⁵ is not available due to the r D has already been penalised in Qu 3, 3	egative length. However, • ³ is availab 7, 11, 14 or 19	ole if			
Commonly observed responses:							
1.	$\frac{x}{\sin 52} = \frac{350}{\sin 3}$	$\frac{1}{34} \rightarrow x = 493(\dots)$	award 2/5 ×√√××				
2.	eg $\frac{BK}{34} = \frac{350}{94}$	\rightarrow BK = 126(·59) \rightarrow h = 126(·59) \times sin 52	$= 99(.75) \qquad \text{award } 2/5 \times \times \times \checkmark \checkmark$				

[END OF MARKING INSTRUCTIONS]