

2015 Mathematics

National 5 Paper 2

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Marking Principles for National 5 Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If a specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Credit must be assigned in accordance with the specific assessment guidelines.
- (e) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (f) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
- (g) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
- (h) Scored out or erased working which has not been replaced should be marked where still legible. However, if the scored out or erased working has been replaced, only the work which has not been scored out should be judged.
- (i) Where a candidate has made multiple attempts, mark all attempts and award the lowest mark.
- (j) Unless specifically mentioned in the specific assessment guidelines, do not penalise:
 - Working subsequent to a correct answer
 - Correct working in the wrong part of a question
 - Legitimate variations in solutions
 - Bad form
 - Repeated error within a question

Detailed Marking Instructions for each question

Ques	Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •				
1.			Ans: £253 628 (·16)	3					
			• ¹ know how to increase by 2·8%		● ¹ × 1·028				
			 ² know how to calculate expected turnover 		• ² 240 000 x 1.028 ²				
			 ³ carry out calculations correctly within a valid strategy 		• ³ 253 628 (·16)				
Note	s:								
1.	For	an ar	nswer of 253 628 without working		award 3/3				
2.	Whe	ere ar	n incorrect percentage is used, the	working mu	st be followed through to give the				
	pos	sibilit	y of awarding 2/3						
	e.g.	for a	an answer of 393 216 (240 000 x 1·2	28^2), with w	orking award 2/3				
3.	For a	an ans	swer of 246 720 (240 000 x 1.028),	no working	necessary award 1/3				
4.	For an answer of 493 440 (240 000 x 1.028 x 2), with working award 1/3								
5.	For an answer of 253 440 (240 000 + 240 000 x 0.028×2), with working award 1/3								
6. For an answer of 13 440 (240 000 x 0.028 x 2)		award 0/3							

Que	Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
2.			Ans: <i>a</i> = 7	2	
			• ¹ valid strategy		• ¹ $3a+2=23$ or $3\times7+2(=23)$
			• ² state value of a		• ² 7
Not	es:				
1.	Corre	ct an	swer without working awar	d 2/2	
2.	Accep	ot $x =$	=7 awar	d 2/2	
3.	For a	n ansv	wer of $3 \times 23 + 2 = 71$ awar	d 0/2	

Question			Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
3.			 Ans: 0.78 km ¹ correct substitution into cosine rule ² evaluate AB² ³ calculate AB 	3	 ¹ 1·35² + 1·2² - 2 x 1·35 x 1·2 x cos35° ² 0·608 ³ 0·78
Notes: 1. For 0.8 with valid working award 3/3 2. Disregard errors due to premature rounding provided there is evidence e.g. $1.35^2 + 1.2^2 - 2 \times 1.35 \times 1.2 \times 0.8 = 0.6705 \implies$ final answer = 0.82 award 3/3					

- e.g. $1\cdot35^2 + 1\cdot2^2 2 \times 1\cdot35 \times 1\cdot2 \times 0\cdot8 = 0\cdot6/05 \Rightarrow$ final a 3. Correct answer without working award 0/3 4. For 2·49 (uses RAD) or 0·71 (uses GRAD), with working award 3/3

Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •			
4.		•Ans: 23	2				
		• ¹ start process		• 1 6 ² + (-13) ² + 18 ²			
		\bullet^2 solution		• ² 23			
Not	es:						
1.	1. Correct answer without working award 2/2						
2.	2. For $13.8(e.g. \sqrt{6^2 - 13^2 + 18^2})$, no working necessary, award 1/2						

Que	Question		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
5.			Ans: $\begin{pmatrix} -1 \\ -2 \end{pmatrix}$	2	
			 ¹ state components of either vector p or vector q 		• $\begin{pmatrix} -5 \\ 3 \end{pmatrix}$ or $\begin{pmatrix} 4 \\ -5 \end{pmatrix}$
			 ² state components of vector p and vector q and vector p + q 		• $^{2} \begin{pmatrix} -1 \\ -2 \end{pmatrix}$
Note	es:				
1. Al	terna	tive	method:		
• ¹ co • ² st	orrect ate c	: nose ompo	e to tail diagram (must include arrov ments of vector p + q	vs)	
2. Co	orrect	t ansv	ver without working award 2/2		
3. Sp	oecial	case	s (working must be shown)		
(a	$\left(\begin{array}{c} 5\\ -3\end{array}\right)$		$\begin{pmatrix} -4 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ award 1/2 × \checkmark		
(b	$\left(\begin{array}{c} 3\\ -5\end{array}\right)$	5)+(-	$\begin{pmatrix} -5 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$ award 1/2 × \checkmark		
4. Fo	or (-1	l,-2)	award 1/2		

Question			Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
6.	(a)		Ans: 1.1×10 ¹² km ³	3	
			 ¹ substitute radius into volume of a sphere formula 		• ¹ V= $\frac{4}{3} \times \pi \times (6400)^3$
			• ² evaluate volume		• ² 1·098 x 10 ¹²
			 ³ round volume to 2 significant figures 		• ³ $1 \cdot 1 \times 10^{12}$
Note	es:				
1. Ac	cept	varia	tions in π		
2. So (a (b (c	ome a) 1·1) 1·1) 1·1	nswe ×10 ¹² 0×10)×10 ¹	rs (without working) award 3/3 12 (2 d.p.) award 2/3 $\checkmark\checkmark\times$ award 0/3		
3. Sc	ome a	nswe	rs (working must be shown)		
(a	$(1) \frac{4}{3}$	× \ \ × ($(6400)^2 = 1.71 \times 10^8 = 1.7 \times 10^8$ av	ward 2/3 ×	$\checkmark\checkmark$
(b	$(1) \frac{4}{3}$	×π×6	$400 = 2.68 \times 10^4 = 2.7 \times 10^4$ av	vard 1/3 ×	×√
	(b)		Ans: 50 times bigger	2	
			 ¹ know to divide earth volume by moon volume 		• ¹ $\frac{1 \cdot 1 \times 10^{12}}{2 \cdot 2 \times 10^{10}}$
			• ² divide correctly		• ² 50
Note	s:	+	wor without working over 2/2	•	
2	1.098	1.0 ans ×1	$\frac{0^{12}}{0} = 49.9,50 \text{ or } 49 \text{ award } 2/2$		
	Z·Z	.×10**			

Question			Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •		
7.	 Ans: 10s •¹ know how to start division calculation •² continue process 		 Ans: 10s ¹ know how to start division calculation ² continue process 	3 •1 $\frac{5t}{s} \times \frac{2s^2}{t}$ or equivalent •2 evidence of correctly cancelling either variation or $\frac{10ts^2}{st}$	• $\frac{5t}{s} \times \frac{2s^2}{t}$ or equivalent • evidence of correctly cancelling either variable or $\frac{10ts^2}{st}$		
			• ³ express in simplest form		• ³ 10 <i>s</i>		
Note	es:						
1. Correct answer without working award 3/3							
2	2. For $\frac{10s}{1}$ award 2/3 $\checkmark \checkmark \times$						

Question			Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •	
8.	8.		Ans: £350	3		
			• 1 know that 85% = £297.50		• 1 85% = 297.50	
			• ² begin valid strategy		• 2 1% = $\frac{297 \cdot 50}{85}$ (=3.5)	
			• ³ answer		• ³ 100% = $\frac{297 \cdot 50}{85} \times 100 = 350$	
Note	s:					
1. F	or 35	0 witl	h or without working	award 3/3		
2. F	or 25	2.88	(85% of 297·50) or 342·13 (115% of 2	297.50)		
(i	i) and	evid	ence of 85% = 297.50	award 1/3	√xx	
(ii	i) oth	erwis	e	award 0/3		
3. For $115\% = 297.50 \rightarrow 258.70$			$297.50 \rightarrow 258.70$	award 2/3	×√√	
4. For subsequent incorrect working, the final mark is not available					ilable	
e.	e.g. 350 + 2		97.50 = 647.50	award 2/3	/√x	

Que	stion		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
9.			Ans: 225 cm ²	4	
			• ¹ linear scale factor		• $^{1}\frac{30}{24}$
			 ² know how to find area of triangle PRS 		$\bullet^2 \left(\frac{30}{24}\right)^2 \times 400$
			• ³ find area of triangle PRS		• ³ 625
			 ⁴ find area of quadrilateral PQTS 		• ⁴ 225
Note	es:	h			
1.	(a) $\frac{30}{24}$	$\frac{1}{4} \times 40$	00 = 500 award 1/4	√xxx	
	(b) $\frac{2}{2^4}$	$\frac{1}{4} \times 40$	00 - 400 = 100 award 2/4	√xx√	
((c) $\left(\frac{3}{2}\right)$	$\left(\frac{30}{24}\right)^3$	$400 - 400 = 381 \times 25$ award 3/4	√x√√	
2. V e	Vhere $\frac{3}{2}$	prem $\frac{0}{4} = 1$	hature rounding leads to an inaccuration $\cdot 25 \Rightarrow 1 \cdot 3^2 \times 400 = 676 \rightarrow 276$ awa	ate answer for a strain of the second secon	the third mark is not available ×√
3. т	he fo	urth r	nark is not available where area of ti	riangle PRS i	is less than 400
e	e.g. ($\left(\frac{24}{30}\right)^2$	\times 400 = 256 award 2/4 $\times \sqrt{\sqrt{x}}$	5	
4. V i	Vhere s 3/4	cand ×√√	idate assumes that triangles are right \checkmark (but see note 2 above)	t-angled the	e maximum available mark
			• ² $QR = \frac{400}{\frac{1}{2} \times 24} = 33\frac{1}{3} \rightarrow PR =$	$\frac{30}{24} \times 33\frac{1}{3} =$	$=41\frac{2}{3}$
			• ³ area of <i>PRS</i> = $\frac{1}{2} \times 41\frac{2}{3} \times 30 = 0$	625	
			• ⁴ area of $PQTS = 225$		
5. Co	orrect	t ansv	ver without working award 3/4		

Ques	stion		Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •		
10.			Ans: 25cm	4			
			• ¹ correct fraction of circle		• 1 $\frac{65}{360}$		
			• ² construct equation		• ² e.g. $\frac{65}{360} \times \pi \times d = 28 \cdot 4$		
			• ³ know how to solve equation		• ³ e.g. $d = \frac{28 \cdot 4}{\frac{65}{360} \times \pi}$		
			 ⁴ solve equation and calculate length of the pendulum 		• ⁴ 25		
Note	s:			I			
1. A	ccep	t vari	ations in π .				
2. A	ссер	t 0·57	7 as evidence of $\frac{65}{360} \times \pi$ in awardin	g 2nd and 3	rd marks		
3. D	isreg	ard e	rrors due to premature rounding pro	ovided there	e is evidence.		
е	.g. d	$l = \frac{28}{0}$	$\frac{3\cdot 4}{57} = 49\cdot 8 \rightarrow 24\cdot 9 \qquad \text{award } 4/4$				
4. $\frac{6}{3}$	4. $\frac{65}{360} \times \pi \times r^2 = 28 \cdot 4 \rightarrow 7 \cdot 07 \dots, 7 \cdot 1 \text{ or } 7$ award $3/4 \checkmark \times \checkmark \checkmark$						
5. F	5. For the award of the 4 th mark, the calculation must include 28.4, a fraction (e.g. $\frac{65}{360}$ or						
0	·18) and	d a division by π				
6. C	orrec	t ans	swer without working award 0/4				

Question	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
11.	Ans: 1039·2 cm ²	4	
	• ¹ correct angle		• ¹ 60
	• ² correct substitution into area of triangle formula		• ² $\frac{1}{2}$ × 20 × 20 × sin 60
	 ³ know how to find area of hexagon 		• $^{3}\left(\frac{1}{2}\times20\times20\times\sin60\right)\times6$
	• ⁴ correct calculation and correct units		• ⁴ 1039·2 cm ²
Notes:		I	
1. Correct	units must be given in the final answer	for the awa	ard of the 4 th mark.
2. Disrega	rd errors due to premature rounding pro	vided there	is evidence.
e.g. sir	$160 = 0.87 \Rightarrow \left(\frac{1}{2} \times 20 \times 20 \times 0.87\right) \times 6 = 1$	044 cm ²	award 4/4
3. Some co	(Z)		
(a) $\left(\frac{1}{2}\right)$	$(40 \times 40 \times \sin 60) \times 6 = 4156 \cdot 9 \text{ cm}^2$ awa	rd 3/4 √×	$\checkmark\checkmark$
(b) $\frac{1}{2} \times \frac{1}{2}$	$40 \times 40 \times \sin 60 = 692 \cdot 8 \text{cm}^2$ awa	rd 1/4 √×.	xx
(c) $\left(\frac{1}{2}\right)$	$(\times 20 \times 20) \times 6 = 1200 \text{ cm}^2$ awa	rd 1/4 ××、	/x
4. Use of C (a) Fo (b) Fo	GRAD or RAD (working must be shown) or 970·8cm² [uses GRAD] or —365·8cm² or 365·8cm² [uses RAD]	award 4/4 award 3/4	4
5. Correct	t answer without working award 4	/4	
6. Alternat Award t	tive strategy (using $\frac{1}{2}bh$ to find area on the marks as follows:	f triangle).	
•	¹ correct length of side of hexagon		• ¹ 20
•	² correct substitution into area of triang	gle formula	$\bullet^2 \frac{1}{2} \times 20 \times \sqrt{20^2 - 10^2}$
•	³ know how to find area of hexagon		• ³ $(\frac{1}{2} \times 20 \times \sqrt{20^2 - 10^2}) \times 6$
•	⁴ correct calculation and correct units		• ⁴ 1039·2 cm ²

Question		Expected Answer(s)		ted Answer(s)	Max Mark	Illustrations of evidence for
Que	~		Give	one mark for each •	max mark	awarding a mark at each •
12.			Ans:	1.99 metres	4	
			• ¹ ma rigl	rshal facts and recognize nt-angle		• ¹ 0·9 x 1·2
			• ² cor	rect Pythagoras statement		• ² $x^2 = 1 \cdot 2^2 - 0 \cdot 9^2 \ (= 0 \cdot 63)$
			• ³ cor	rect calculation of x		• ³ 0·79
			● ⁴ find	d depth of milk		• ⁴ 1×99
Note	es:					
1.	x = 0	8 an	d dept	h = 2 are acceptable in awa	rding the th	ird and fourth marks
Ζ.	The fi	inal m	iark is	for adding 1.2 to a value whi	ch has beer	calculated
3.	In the	e abse	nce of	a diagram accept $x^2 = 1 \cdot 2^2$	-0.9^2 as e	vidence for the award of
		2 1	$2^2 + 0$	0^2 \sim 1.5 \sim depth 2	7	
4.	ror x	۰ I = th دد	2 ± 0	$49 \rightarrow x = 1.5 \rightarrow \text{deptil} = 2.5$	1	
	(a) with correct diagram award $3/4 \checkmark \times \checkmark \checkmark$					
5.	Where	e a ca	indidat	e assumes angle MLO = angle	OML = 45°,	only the 1st and 4th
	marks	area	availab	ole	-)	-
6.	For ar	n ansv	ver of	1.99 without working		award 0/4

Question	Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
13.	Ans: 23·8 kilometres	4	
	 ¹ calculate the size of angle PQR 		• ¹ 52
	• ² correct substitution into sine rule		$\bullet^2 \frac{q}{\sin 52} = \frac{25}{\sin 56}$
	• ³ know how to solve equation		• ³ $q = \frac{25\sin 52}{\sin 56}$
	• ⁴ calculate PR correctly		• ⁴ 23·8
Notes:	· · · · · ·		

- 1. Disregard errors due to premature rounding provided there is evidence
- 2. Where incorrect sizes are used for angles, marks 3 and 4 are still available for rearranging and processing a sine rule calculation

e.g.	$\frac{25}{\sin 160} =$	$=\frac{q}{\sin 128} \rightarrow q = 57.6$	award 2/4	xx√√
------	-------------------------	--	-----------	------

3. For a correct answer without working award 0/4

- 4. For $\frac{q}{52} = \frac{25}{56} \rightarrow q = 23 \cdot 2...$ award $1/4 \checkmark \times \times \times$
- 5. Use of GRAD or RAD (working must be shown) (a) For 23.7 [uses GRAD] award 4/4 (b) For -47.3 or 47.3 [uses RAD] award 3/4

Question			Expected Answer(s) Give one mark for each •	Max Mark	Illustrations of evidence for awarding a mark at each •
14.	(a)	(i)	Ans: $2x + 13$ • ¹ correct expression	1	• $^{1} 2x + 13$
		(ii)	Ans: $\frac{4x^2 + 44x + 117 = 270}{\Rightarrow 4x^2 + 44x - 153 = 0}$	2	
			 ¹ find expression for area of card and expand pair of brackets 		• ¹ $(2x+13)(2x+9) = 4x^2 + 44x + 117$
			 ² construct equation and rearrange into required form 		$ •2 x^{2} + 44x + 117 = 270 ⇒ 4x^{2} + 44x - 153 = 0 $

Notes:

1. If solution to (a)(ii) appears in (b) then both marks are available

(b)	Ans: $x = 2 \cdot 8$ cm	4	
	 ¹ correct substitution into quadratic formula 		• ¹ $x = \frac{-44 \pm \sqrt{44^2 - 4 \times 4 \times (-153)}}{2 \times 4}$
	• ² evaluate discriminant		• ² $x = \frac{-44 \pm \sqrt{4384}}{2 \times 4}$ (stated or implied by • ³)
	• ³ solve for x		• ³ $x = 2.77$ and -13.77
	• ⁴ select positive value of <i>x</i> , correctly stated to 1 decimal place		• ⁴ $x = 2 \cdot 8$
			1

Notes:

1. If solution to (b) appears in a(ii) then all four marks are available. However, if a different value for x is stated in (b) then the fourth mark is not available. (General Marking Principle (i) should not be applied in this special case.)

- 2. Where $b^2 4ac$ is calculated incorrectly, the third and fourth marks are only available if $b^2 4ac > 0$.
- 3. Where a, b and c are all positive the second mark is not available.
- 4. Correct answer without working award 0/4

[END OF MARKING INSTRUCTIONS]