

## 2023 Engineering Science

# National 5

## **Finalised Marking Instructions**

© Scottish Qualifications Authority 2023

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.



Downloaded free from https://sqa.my/

#### General marking principles for National 5 Engineering Science

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) Where a candidate makes an error at an early stage in a multi-stage calculation, credit should normally be given for correct follow-on working in subsequent stages, unless the error significantly reduces the complexity of the remaining stages. The same principle should be applied in questions which require several stages of nonmathematical reasoning.
- (c) All units of measurement will be presented in a consistent way, using negative indices where required (eg ms-1). Candidates may respond using this format, or solidus format (m/s) or words (metres per second), or any combination of these (eg metres/second).
- (d) For numerical questions, candidates should round their final answers to an appropriate number of significant figures. However, award marks if their answer has up to two figures more or one figure less than the expected answer.

### Marking instructions for each question

### Section 1

| Q  | Question |  | Expected response                                  | Max<br>mark | Additional guidance                                             |  |
|----|----------|--|----------------------------------------------------|-------------|-----------------------------------------------------------------|--|
| 1. | (a)      |  | user input doorbell sound                          | 1           | 1 mark for sound at output.                                     |  |
|    |          |  |                                                    |             | Accept noise/light.                                             |  |
|    | (b)      |  | Closed loop (control)                              | 1           | Do not accept closed on its own.                                |  |
| 2. |          |  | Velocity Ratio = Speed of Input<br>Speed of Output | 2           | 1 mark for substitution.                                        |  |
|    |          |  | Velocity Ratio = $\frac{360}{12}$                  |             | 1 mark for correct answer from given working. Ignore any units. |  |
|    |          |  |                                                    |             | Ratio must be simplified.                                       |  |
|    |          |  | VR = 30 : 1                                        |             | Accept 30.                                                      |  |
| 3. |          |  | A °                                                | 2           | 1 mark for B wired to NOT gate.                                 |  |
|    |          |  |                                                    |             | 1 mark for AND gate with inputs and output connections.         |  |
| 4. | (a)      |  | Size/direction/position of force(s).               | 1           | Descriptive response.                                           |  |
|    |          |  |                                                    |             | Do not accept: size/direction/<br>forces/position on its own.   |  |
|    |          |  |                                                    |             | Accept distance between cables.                                 |  |
|    | (b)      |  | $\varepsilon = \frac{\Delta \iota}{\Delta t}$      | 2           |                                                                 |  |
|    |          |  | l                                                  |             | 1 mark for substitution.                                        |  |
|    |          |  | $\varepsilon = \frac{0.0013}{4.5}$                 |             | 1 mark for correct answer from given working.                   |  |
|    |          |  | ε = 0.000288889                                    |             | Ignore any units.                                               |  |
|    |          |  | ε = 0.00029 (2 sf)                                 |             |                                                                 |  |
|    | (c)      |  | Tensile                                            | 1           | Accept tension/tie.                                             |  |
|    |          |  |                                                    |             | Do not accept pulling force/gravity.                            |  |

| Ç  | Question |  | Expected response                                                                                                                      | Max<br>mark | Additional guidance                                                                                                                                                                                                                                                          |
|----|----------|--|----------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. | (a)      |  | V = IR<br>V = 0.0025 × 120<br>V = 0.30 V (2 sf)                                                                                        | 2           | 1 mark for substitution.<br>1 mark for answer from given<br>working with unit.                                                                                                                                                                                               |
|    | (b)      |  | Decrease (in the current).                                                                                                             | 1           |                                                                                                                                                                                                                                                                              |
| 6. | (a)      |  | $E_e = ItV$<br>$E_e = 1.5 \times 160 \times 18$<br>$E_e = 4320$<br>$E_e = 4.3 \text{ kJ (2 sf)}$                                       | 2           | <ol> <li>1 mark for substitution.</li> <li>1 mark for correct answer from<br/>given working with unit.</li> <li>Alternative method using power:</li> <li>1 mark for 27(W).</li> <li>1 mark for energy (E = P × t) final<br/>answer with unit.</li> <li>Apply FTE.</li> </ol> |
|    | (b)      |  | Reduce wear (on the gear system).<br>Gears run smoother/quieter.<br>Improve efficiency/battery life.<br>Less heat/sound/energy losses. | 1           | Descriptive response.<br>Accept reduces friction (stated or<br>implied).<br>Accept stops the gears rusting/<br>prevents losing torque.                                                                                                                                       |

| Q  | Question |  | Expected response        | Max<br>mark | Additional guidance                                                                                                                        |
|----|----------|--|--------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | (a)      |  |                          | 1           | 1 mark for lamp symbol and correct connections.                                                                                            |
|    | (b)      |  | Light Dependant Resistor | 1           | Do not accept LDR.                                                                                                                         |
|    | (c)      |  |                          | 1           | 1 mark for position of ammeter,<br>indicated on the wire, to measure<br>the base current.<br>Accept ammeter symbol in correct<br>position. |
|    | (d)      |  | (Fixed) Resistor         | 1           | Accept variable resistor.                                                                                                                  |

#### Section 2

| Question |     |  | Expected response                                                                                                     | Max<br>mark                         | Additional guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----|--|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8.       | (a) |  | start<br>pin 7 off<br>pin 6 off<br>yes<br>pin 7 on<br>pin 6 on<br>wait 0-3 s<br>pin 6 off<br>wait 0-3 s<br>yes<br>yes | 10       7       7       7       10 | <ul> <li>Pin 0 on ? decision - 1 mark.</li> <li>Yes loop to start (arrow provided) - 1 mark.</li> <li>Pin 7 on in correct position - 1 mark.</li> <li>Pin 6 on and off in correct position - 1 mark.</li> <li>Both delays in correct position - 1 mark.</li> <li>Both delays in correct position - 1 mark.</li> <li>Total delay time with unit = 0.6s - 1 mark.</li> <li>x3 ? decision with Y/N - 1 mark.</li> <li>Correct repeat sequence loop with arrow back to before pin 6 on - 1 mark.</li> <li>Loop after sequence with arrow back to before pin 6 on - 1 mark.</li> <li>Loop after sequence with arrow back to before pin 0 - 1 mark.</li> <li>Accept (on, off, delay) sequence repeated three times - 2 marks.</li> <li>All symbols correct - 1 mark.</li> </ul> |

| Question |     |  | Expected response      | Max<br>mark | Additional guidance                                     |
|----------|-----|--|------------------------|-------------|---------------------------------------------------------|
| 8.       | (b) |  | $\sigma = \frac{F}{A}$ | 3           |                                                         |
|          |     |  | $15 = \frac{F}{48}$    |             | 1 mark for substitution.                                |
|          |     |  | <i>F</i> = 15 × 48     |             | 1 mark for transposition.                               |
|          |     |  | F = 720 N (2 sf)       |             | 1 mark for correct answer from given working with unit. |

| Question |     |     | Expected response                                                                                     | Max<br>mark | Additional guidance                                                                                                        |
|----------|-----|-----|-------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------|
| 9.       | (a) |     | When a signal is received from the microcontroller                                                    | 5           | Descriptive response.                                                                                                      |
|          |     |     | valve 1 actuates and pilot air<br>switches valve 2 and piston A<br>outstrokes.                        |             | 1 mark for valve 1/2 causing piston A to outstroke.                                                                        |
|          |     |     | piston A actuates valve 4 which<br>sends pilot air to reset valve 2<br>causing piston A to instroke.  |             | 1 mark for valve 4 and 2 to cause piston A to instroke.                                                                    |
|          |     |     | valve 1 actuates and pilot air<br>switches valve 3 and piston B<br>outstrokes.                        |             | 1 mark for valve 1/3 causing piston B to outstroke.                                                                        |
|          |     |     | piston B actuates valve 5 which<br>sends pilot air to reset valve 3<br>causing pistion B to instroke. |             | 1 mark for valve 5 and 3 causing piston B to instroke.                                                                     |
|          |     |     | Piston A outstrokes slowly and piston<br>B instrokes slowly.                                          |             | 1 mark for piston A outstroking<br>slowly <b>and</b> piston B instroking<br>slowly.                                        |
|          |     |     |                                                                                                       |             | If response describes valve 1 (or<br>both 5/2 valves) causing both pistons<br>to outstroke then 2 marks can be<br>awarded. |
|          |     |     |                                                                                                       |             | Instroking conditions must clearly<br>link both named valves to the<br>correct cylinder.                                   |
|          | (b) | (i) | $P = \frac{F}{A}$                                                                                     | 3           |                                                                                                                            |
|          |     |     | $0.32 = \frac{620}{A}$                                                                                |             | 1 mark for substitution.                                                                                                   |
|          |     |     | $A=\frac{620}{0.32}$                                                                                  |             | 1 mark for transposition.                                                                                                  |
|          |     |     | A = 1937.5                                                                                            |             |                                                                                                                            |
|          |     |     | $A = 1900 \text{ mm}^2$ (2 sf)                                                                        |             | 1 mark for correct answer from given working with unit.                                                                    |

| Question |     | on   | Expected response                                              | Max<br>mark                 | Additional guidance                                                  |
|----------|-----|------|----------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|
| 9.       | (b) | (ii) | $A=\frac{\pi d^2}{4}$                                          | 3                           |                                                                      |
|          |     |      | $1900 = \frac{\pi d^2}{4}$                                     |                             | 1 mark for substitution.<br>Allow FTE from (b)(i).                   |
|          |     |      | $d = \sqrt{\frac{1900 \times 4}{\pi}}$ $d = 49.1849$           |                             | 1 mark for transposition.                                            |
|          |     |      | d = 49 mm (2 sf)                                               |                             | 1 mark for correct answer from given working with unit.              |
|          |     |      |                                                                |                             | If radius is given as the final answer then max 2 marks.             |
|          | (c) |      | (Line) 7                                                       | 1                           |                                                                      |
|          | (d) |      |                                                                | 2                           | Bottle sensor correctly wired to pin 2 - 1 mark.                     |
|          |     |      |                                                                |                             | Pin 7 correctly wired to base of transistor - 1 mark.                |
|          |     |      |                                                                |                             | Do not accept any additional pins wired to bottle sensor/transistor. |
|          |     |      | 5V o<br>bottle<br>sensor<br>0 7<br>-1 6<br>2 5<br>-3 4<br>0V o | 12V<br>sign<br>pne<br>circu | al to<br>umatic<br>uit                                               |

| Q   | Question |  | Expected response                                                                  | Max<br>mark | Additional guidance                                                                                 |
|-----|----------|--|------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------|
| 10. | (a)      |  | Design the LED/charging/sensing<br>circuit.<br>Write the control program           | 1           | Descriptive electronic based<br>response relating to the design<br>phase.                           |
|     |          |  | Simulate/test/prototype the LEDs circuit.                                          |             | 1 mark for any appropriate response<br>of an engineer's activity and specific<br>electronic aspect. |
|     |          |  | Calculate the voltage/current/power required for all LEDs.                         |             | Building must relate to prototype.                                                                  |
|     |          |  | Selecting components to be used to drive/protect the LEDs.                         |             | Do not accept circuit/circuit<br>diagram/warning sign on its own as<br>an electronic aspect.        |
|     | (b)      |  | Reduction in running costs.<br>Longer lasting so repair/replacement<br>costs less. | 1           | Descriptive response relating to financial impact (positive/negative) using LEDs.                   |
|     |          |  |                                                                                    |             | 1 mark for an economic impact (positive/negative).                                                  |
|     |          |  |                                                                                    |             | Do not accept LEDs are cheaper on its own.                                                          |
|     | (C)      |  | LEDs are long lasting<br>resulting in less materials going to<br>landfill.         | 2           | Explanation based on environmental impact (positive/negative) of using solar powered LEDs.          |
|     |          |  | It is a renewable source/does not                                                  |             | 1 mark for cause.                                                                                   |
|     |          |  | use fossil fuel<br>so it does not pollute/damage the<br>environment.               |             | 1 mark for effect.                                                                                  |
|     |          |  | Solar does not produce CO2                                                         |             |                                                                                                     |
|     |          |  | reducing climate change/global warming.                                            |             |                                                                                                     |
|     |          |  | Solar powered LEDs do not need mains electricity                                   |             |                                                                                                     |
|     |          |  | so no need to dig up the ground to lay cabling.                                    |             |                                                                                                     |

| Question |     | on   | Expected response                                           | Max<br>mark | Additional guidance                                     |
|----------|-----|------|-------------------------------------------------------------|-------------|---------------------------------------------------------|
| 10.      | (d) | (i)  | $\frac{1}{RT} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$ | 3           |                                                         |
|          |     |      | $\frac{1}{RT} = \frac{1}{82} + \frac{1}{78} + \frac{1}{86}$ |             | 1 mark for substitution.                                |
|          |     |      | $RT = \frac{1}{0.03664354175}$                              |             | 1 mark for transposition.                               |
|          |     |      | $R_T = 27.28994$                                            |             | 1 mark for correct answer from                          |
|          |     |      | $R_{T} = 27 \ \Omega \ (2 \ \text{sf})$                     |             | given working with unit.                                |
|          |     | (ii) | $R_T = 27 + 390$                                            | 1           | Allow FTE from part (i).                                |
|          |     |      | $R_T = 417 \ \Omega$                                        |             |                                                         |
|          |     |      | $R_{T} = 420 \ \Omega \ (2 \ \text{sf})$                    |             | 1 mark for correct answer with unit.                    |
|          | (e) |      | P = VI                                                      | 3           |                                                         |
|          |     |      | 1.8 = 12 × <i>I</i>                                         |             | 1 mark for substitution.                                |
|          |     |      | $I = \frac{1.8}{12}$                                        |             | 1 mark for transposition.                               |
|          |     |      | / = 0.15 A (2 sf)                                           |             | 1 mark for correct answer from given working with unit. |

| Q   | Question |       | Expected response                                                                                                                                                       | Max<br>mark | Additional guidance                                                                                                                                                                                                                                |
|-----|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11. | (a)      | (i)   | Design the brake lever.<br>Design the wheels to spin freely.                                                                                                            | 1           | Descriptive mechanical response relating to the design phase and carriage.                                                                                                                                                                         |
|     |          |       | Simulate the brake mechanism.<br>Select an appropriate material for<br>the wheel axle.<br>Calculate the braking force.                                                  |             | <ul> <li>1 mark for any appropriate response<br/>of an engineer's activity and specific<br/>mechanical aspect of the carriage.</li> <li>Do not accept design the wheel/<br/>gears/mechanism on its own.</li> </ul>                                 |
|     |          | (ii)  | Survey/test the ground on the<br>hillside.<br>Plan the route/site of the mountain<br>coaster track.<br>Design the position of the access<br>roads to the coaster track. | 1           | Descriptive civil response relating to<br>the design phase and mountain<br>coaster.<br>1 mark for any appropriate response<br>of an engineer's activity and specific<br>civil aspect.                                                              |
|     |          | (iii) | Monitor the (impact on) local<br>wildlife/area.<br>Measure the noise/pollution level.                                                                                   | 1           | Descriptive environmental response<br>relating to the construction phase.<br>1 mark for any appropriate response<br>of an engineer's activity and specific<br>environmental aspect of the<br>construction.<br>Must be a monitoring based activity. |
|     | (b)      | (i)   | $E_{p} = mgh$ $13 \times 10^{3} = m \times 9.8 \times 6.2$ $m = \frac{13000}{9.8 \times 6.2}$ $m = 213.9566$ $m = 210 \text{ kg (2 sf)}$                                | 3           | <ol> <li>1 mark for substitution.</li> <li>1 mark for transposition.</li> <li>1 mark for correct answer from given working with unit.</li> </ol>                                                                                                   |

| Question |     |      | Expected response                                                                                                                                                                                                                                | Max<br>mark | Additional guidance                                                                                                                                                                                              |
|----------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.      | (b) | (ii) | $E_k = \frac{1}{2} \text{ mv}^2$<br>$E_k = \frac{1}{2} \times 210 \times 2.7^2$<br>$E_k = 765.45$<br>$E_k = 770 \text{ J (2 sf)}$                                                                                                                | 2           | 1 mark for substitution.<br>Allow FTE from (b)(i).<br>1 mark for correct answer from<br>given working with unit.                                                                                                 |
|          | (c) |      | 2000 - 2100 (N)                                                                                                                                                                                                                                  | 1           | Unit not required.                                                                                                                                                                                               |
|          | (d) |      | B<br>Metal B is corrosion resistant and is<br>(more) durable.<br>Metal B because the structure will<br>be used outside and it is corrosion<br>resistant.<br>Metal B because it is durable and so<br>parts will not need to be replaced<br>often. | 2           | <ul> <li>1 mark for metal B.</li> <li>1 mark for corrosion resistant and durable.</li> <li>OR</li> <li>1 mark for a property with valid rationale based on selection. Apply FTE from metal selection.</li> </ul> |

| Question |     | on | Expected response                                                                                                                                                                                                                                                                                                                                                     | Max<br>mark | Additional guidance                                                                                                                                                                                                                |
|----------|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.      | (a) |    | To separate an (external) input/<br>output from a sub-systems/ process.<br>To contain all the sub-systems that<br>are in a system.<br>To show what goes in/out of a<br>system.<br>To separate the outside environment<br>from a system.                                                                                                                               | 1           | Response describing containment/<br>separation of system and external<br>influences.                                                                                                                                               |
|          | (b) |    | The water temperature is set<br>The temperature sensor (detects the<br>actual temperature and) sends a<br>signal to the control.<br>The control will compare the set<br>temperature with the actual<br>temperature.<br>If the water is too cold the heater<br>will switch on.<br>OR<br>If the water is at/above the set<br>temperature the heater will switch<br>off. | 3           | <ul> <li>1 mark for feedback description.</li> <li>1 mark for control comparison description.</li> <li>1 mark for description of the heating element switching on when too cold/switching off when correct temperature.</li> </ul> |
|          | (c) |    | (Туре) 1                                                                                                                                                                                                                                                                                                                                                              | 1           |                                                                                                                                                                                                                                    |
|          | (d) |    | Less energy will be needed to heat<br>the water<br>so there will be fewer greenhouse<br>gasses given off/reducing climate<br>change/carbon footprint.                                                                                                                                                                                                                 | 2           | Explanation must relate to climate<br>change.<br>1 mark for cause (energy reduced).<br>1 mark for effect (greenhouse gas<br>emission). Apply FTE.                                                                                  |

| Question |     | n | Expected response                                                                                                                                                                                                                                         | Max<br>mark | Additional guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-----|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.      | (e) |   | $E_h = cm\Delta T$<br>$E_h = 4180 \times 8.6 \times 15$<br>$E_h = 539220$<br>$E_h = 540 \text{ kJ (2 sf)}$                                                                                                                                                | 2           | 1 mark for substitution.<br>1 mark for correct answer from<br>given working with unit.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (f) |   | A         B         C         D         Z           0         0         1         1         0           0         1         1         1         1           1         0         0         0         0           1         1         0         1         1 | 3           | 1 mark for column C (NOT A).<br>1 mark for column D (C OR B).<br>Allow FTE.<br>1 mark for column Z (D AND B).<br>Allow FTE.                                                                                                                                                                                                                                                                                                                                                                                    |
|          | (g) |   | $Y = (F \bullet \overline{G} \bullet H) + (F \bullet G \bullet \overline{H})$<br>Alternative<br>$Y = F \bullet ((\overline{G} \bullet H) + (G \bullet \overline{H}))$<br>$Y = F \bullet (G \oplus H)$                                                     | 3           | <ul> <li>1 mark for (F•G•H).</li> <li>1 mark for (F•G•H).</li> <li>1 mark for (F•G•H).</li> <li>If only one statement is given then<br/>bracket is not required.</li> <li>1 mark for OR-ing all statements.<br/>Do not accept F/G/H on its own as a<br/>statement.</li> <li>Alternative</li> <li>1 mark for F AND</li> <li>1 mark for both (G•H) and (G•H)<br/>with brackets.</li> <li>1 mark for OR-ing G/H statements.</li> <li>If Exclusive OR used then 2 marks for<br/>(G EOR H) with bracket.</li> </ul> |

| Question |     |      | Expected response                                               | Max<br>mark | Additional guidance                                     |
|----------|-----|------|-----------------------------------------------------------------|-------------|---------------------------------------------------------|
| 13.      | (a) |      | reel: rotary                                                    | 2           | 1 mark for reel motion.<br>Accept rotational/rotating.  |
|          |     |      | cutter bar: reciprocating                                       |             | 1 mark for cutter bar motion.<br>Accept reciprocal.     |
|          | (b) | (i)  | ΣСWM = ΣΑСWM                                                    | 3           |                                                         |
|          |     |      | $(R_A \times 4.4) = (82 \times 2.6) + (32 \times 6.8)$          |             | 1 mark for substitution.                                |
|          |     |      | $R_{A}=\frac{430.8}{4.4}$                                       |             | 1 mark for transposition.                               |
|          |     |      | R <sub>A</sub> = 97.909<br>R <sub>A</sub> = <b>98 kN (2 sf)</b> |             | 1 mark for correct answer from given working with unit. |
|          |     | (ii) | $\Sigma F_{vertical} = 0$ $\Sigma F_{up} = \Sigma F_{down}$     | 2           |                                                         |
|          |     |      | $R_B$ + 98 = 32 + 82                                            |             | 1 mark for substitution.                                |
|          |     |      | $R_B = 16 \text{ kN} (2 \text{ sf})$                            |             | Allow FTE from part(b)(i).                              |
|          |     |      |                                                                 |             | 1 mark for correct answer from given working with unit. |

| Question |     |  | Expected response                                                   | Max<br>mark | Additional guidance                                                    |
|----------|-----|--|---------------------------------------------------------------------|-------------|------------------------------------------------------------------------|
| 13.      | (c) |  | 3750 × 10 = Output speed × 50                                       | 4           | 1 mark for substitution.                                               |
|          |     |  | $Outputspeed = \frac{37500}{50}$                                    |             |                                                                        |
|          |     |  | Output speed = 750 (revs min <sup>-1</sup> )                        |             | 1 mark for correct answer from given working (unit not required).      |
|          |     |  | 750 × 12 = 250 × gear D                                             |             | 1 mark for substitution.<br>Allow FTE.                                 |
|          |     |  | $gearD = \frac{9000}{250}$                                          |             |                                                                        |
|          |     |  | gear $D = 36$ (teeth)                                               |             | 1 mark for correct answer from working (ignore any units).             |
|          |     |  | Alternative method                                                  |             | Alternative method                                                     |
|          |     |  | $VR = \frac{3750}{250}$                                             |             | 1 mark for velocity ratio (does not need to be simplified).            |
|          |     |  | <i>VR</i> = 15:1                                                    |             |                                                                        |
|          |     |  | $\frac{15}{1} = \frac{50}{10} \times \frac{D}{12}$                  |             | 1 mark 50:10 gear ratio (ratios could be inverted).                    |
|          |     |  | $D = \frac{15 \times 12 \times 10}{50}$                             |             | 1 mark for transposition.                                              |
|          |     |  | gear $D = 36$ (teeth)                                               |             | 1 mark for correct answer from working (ignore any units).             |
|          | (d) |  | Graphene.                                                           | 2           | Accept impact for any emerging                                         |
|          |     |  | Conducts electricity quickly.                                       |             | technology.                                                            |
|          |     |  | this would result in batteries<br>charging quicker/circuits working |             | 1 mark for cause.                                                      |
|          |     |  |                                                                     |             |                                                                        |
|          |     |  | Fully autonomous car.                                               |             | If no technology named or the given<br>example is clearly established/ |
|          |     |  | Will not be fully tested.                                           |             | developing; 1 mark maximum for<br>having both cause and effect.        |
|          |     |  | so, there could be faults/could cause an accident.                  |             |                                                                        |

| Question |     |  | Expected response                          | Max<br>mark | Additional guidance                                                                                        |
|----------|-----|--|--------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------|
| 14.      | (a) |  | As the temperature increases               | 2           | Descriptive response.                                                                                      |
|          |     |  | The (thermistor) resistance will decrease. |             | 1 mark for thermistor resistance decreasing.                                                               |
|          |     |  | The voltage $(V_{in})$ will increase.      |             | 1 mark for <i>V<sub>in</sub></i> based on resistance response.                                             |
|          |     |  |                                            |             | If <i>V<sub>in</sub></i> increasing stated without<br>reference to thermistor resistance -<br>1 mark only. |
|          | (b) |  |                                            | 4           |                                                                                                            |
|          |     |  | 5 - 1.9 = 3.1 (V)                          |             | 1 mark for voltage across variable resistor. Units not required.                                           |
|          |     |  | $\frac{3.1}{1.9} = \frac{R}{1.7}$          |             | 1 mark for substitution.<br>Apply FTE and accept 5.0V if V1 is<br>not calculated.                          |
|          |     |  | $R = \frac{3.1 \times 1.7}{1.9}$           |             | 1 mark for transposition.                                                                                  |
|          |     |  | <i>R</i> = 2.77368                         |             | 1 mark for correct answer from                                                                             |
|          |     |  | <i>R</i> = 2.8 kΩ (2 sf)                   |             | given working with unit.                                                                                   |
|          |     |  | Alternative method                         |             | Alternative method                                                                                         |
|          |     |  | 5 - 1.9 = 3.1 (V)                          |             | 1 mark for voltage across variable resistor. Units not required.                                           |
|          |     |  | $V_R = IR$                                 |             |                                                                                                            |
|          |     |  | 1.9 = / × 1.7                              |             | 1 marts for coloriation comment                                                                            |
|          |     |  | <i>I</i> = 1.1176 (mA)                     |             | Units not required.<br>Apply FTE and accept 5.0V if V <sub>1</sub> is                                      |
|          |     |  | V = IR                                     |             | not calculated.                                                                                            |
|          |     |  | 3.1 = 1.1176 x <i>R</i>                    |             |                                                                                                            |
|          |     |  | $R = \frac{3.1}{1.1176}$                   |             | 1 mark for transposition.<br>Allow FTE.                                                                    |
|          |     |  | <i>R</i> = 2.7738                          |             |                                                                                                            |
|          |     |  | R = 2.8 kΩ (2 sf)                          |             | 1 mark for correct answer from given working with unit.                                                    |

| Question |     |  | Expected response                                                               | Max<br>mark | Additional guidance                                                                                                                            |
|----------|-----|--|---------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 14.      | (c) |  | When the transistor activates the relay                                         | 2           | Descriptive response relating to LEDs individually.                                                                                            |
|          |     |  | the red LED will switch off                                                     |             | LED colour needs to be stated/implied by position.                                                                                             |
|          |     |  | and the green LED will switch on.                                               |             | 1 mark for red LED switching off.                                                                                                              |
|          |     |  |                                                                                 |             | 1 mark for green LED switching on.                                                                                                             |
|          |     |  |                                                                                 |             | Apply FTE for second description.                                                                                                              |
|          | (d) |  | +>                                                                              | 2           | <ol> <li>1 mark for correct symbol of the<br/>buzzer.</li> <li>1 mark for wiring connected<br/>anywhere in parallel with green LED.</li> </ol> |
|          | (-) |  |                                                                                 |             |                                                                                                                                                |
|          | (e) |  | Saves money as no replacement components needed.                                |             | advantage of simulation testing.                                                                                                               |
|          |     |  |                                                                                 |             | 1 mark for a relevant description.                                                                                                             |
|          |     |  | Components will not be destroyed/<br>wasted.<br>Easier to change circuit during |             | Not faster, cheaper, easier or safer to simulate on its own.                                                                                   |
|          |     |  | testing.<br>No risk to the user due to<br>fault/failure.                        |             | Component cost must relate to replacement of parts.                                                                                            |
|          | (f) |  | A compound gear train will use smaller gears                                    | 2           | 1 mark for cause (smaller gears/<br>train).                                                                                                    |
|          |     |  | which makes it able to fit inside the small space/laminator.                    |             | Do not accept high velocity ratio as a cause or effect.                                                                                        |
|          |     |  |                                                                                 |             | 1 mark for effect (compact space).                                                                                                             |
|          |     |  |                                                                                 |             | Accept responses explaining the disadvantage of a simple gear train.                                                                           |