

2015 Engineering Science

National 5

Finalised Marking Instructions

© Scottish Qualifications Authority 2015

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

Downloaded free from https://sqa.my/

General Marking Principles for National 5 Engineering Science

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the detailed marking instructions, which identify the key features required in candidate responses.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) If specific candidate response does not seem to be covered by either the principles or detailed Marking Instructions, and you are uncertain how to assess it, you must seek guidance from your Team Leader.
- (d) Full marks are always given for a correct answer but where a candidate makes an error at an early stage in a multi-stage calculation, credit should normally be given for correct follow-on working in subsequent stages, unless the error significantly reduces the complexity of the remaining stages. The same principle should be applied in questions which require several stages of non-mathematical reasoning.
- (e) All units of measurement will be presented in a consistent way, using negative indices where required (eg ms⁻¹). Candidates may respond using this format, or solidus format (m/s) or words (metres per second), or any combination of these (eg metres/second).

Detailed Marking Instructions for each question

Section 1

Question	Expected Answer(s)		Additional Guidance
1.		2	 1 mark for motor and switch symbol. 1 mark for correct positions of three components. Ignore any additional symbols.

Question	Expected Answer(s)	Max Mark	Additional Guidance
2.	$R = \frac{V}{I}$	2	
	$R = \frac{7.2}{0.7}$		
	(1 mark for substitution)		
	= 10.29Ω (1 mark for correct answer from given working with unit)		

Question			Expected Answer(s)	Max Mark	Additional Guidance
3.	. (a) Sub-system (diagram)		1		
	(b)		To amplify the current (signal) To power the heater/output	1	Not switch on or drive the heater

Question		Expected Answer(s)	Max Mark	Additional Guidance
4.	(a)	VR = 260/104	2	1 mark for substitution
		= 2.5 (2.5:1 5:2 etc)		1 mark for correct calculation from given working (ignore any units)
	(b)	An extra gear between the driver and driven / use an idler gear.	1	Descriptive response. Do not accept just 'add another gear' without statement on where it should be added.

Que	stion	Expected Answer(s)	Max Mark	Additional Guidance
5.	(a)	Easier / quicker / simpler to develop than design a complex electronic circuit. Easier/quicker to update/modify.	1	Easier / quicker / simpler must be qualified. Descriptive responses only. Not smaller.
	(b)	The circuits will be manufactured more quickly and more cheaply due to fewer components/ easier to wire. One controller could be used in a number of products.	1	Smaller/cheaper/reliable/quickly must be qualified. Other suitable descriptive responses with qualifying statements accepted.

Question		Expected Answer(s)	Max Mark	Additional Guidance	
6.		1 mark for piping (Port to port) x2	2	Do not penalise for no pilot lines or extra pipes. 1 mark where 3/2 valves are piped to the incorrect 5/2 pilot ports.	

Question	Expected Answer(s)	Max Mark	Additional Guidance
7.	1 mark for correct symbol 1 mark for correct position & orientation	2	Do not accept LED for symbol. Do not penalise if line through triangle is missing.

Question		Expected Answer(s)	Max Mark	Additional Guidance
8.	(a)	Planning the turbines, valves, pumping systems (moving parts).	1	1 mark for any appropriate descriptive answer (Mechanical Engineering based activity and aspect) - accept design.
	(b)	Checking and monitoring the construction of the roads/station/ chimney, coordinating the drilling of holes to allow water to be pumped under the ground.	1	1 mark for any appropriate descriptive answer (Civil Engineering based activity and aspect).
	(c)	Checking the amount of electricity being output from the station to ensure it meets the demand. Monitoring the operation to see if it is safe /efficient.	1	1 mark for any appropriate descriptive answer (Electrical Engineering based activity and aspect).

Que	Question		Expected Answer(s)	Max Mark	Additional Guidance
9.	(a)			1	1 mark for both correctly drawn vectors. To scale and with both arrows.
	(b)		5000N	1	1 mark for a numerical value with unit. (Ignore nature). Allow follow through error (FTE).

Section 2

Question			Expected Answer(s)	Max Mark	Additional Guidance
10.	(a)	(i)	No need to remove fossil fuels from the ground. No CO ₂ produced during use. Clean source of energy.	1	Descriptive positive environmental response. Not renewable on its own.
		(ii)	Effect on the landscape or wild life or construction issues.	1	Descriptive negative environmental response. Not - uses a lot of space/land.
		(iii)	Installation is expensive. Inexpensive long term electricity because the source is free. Brings money to the area due to job creation. Efficiency not as high as fossil fuel so more expensive.	2	Single economic explanation based response - cause (1) and valid effect (1) - apply FTE.
	(b)		The maximum safe wind speed is set. Set level is compared with the actual wind speed detected by the wind speed sensor. If the wind speed is too fast then the output driver will activate the brake / if the wind speed is within safe levels the brake is not applied.	3	1 mark for each correct descriptive based statement (3)
	(c)		Compact size with a large speed changes possible.	1	Descriptive response

Que	stion		Expected Answer(s)	Max Mark	Additional Guidance
	(d)		Velocity Ratio = $\frac{12}{48} \times \frac{8}{56}$ (1 mark for substitution) Velocity Ratio = $\frac{1}{28}$ Velocity Ratio = 1:28 (1 mark for correct answer from given working) Velocity Ratio = $\frac{\text{Speed of input}}{\text{Speed of output}}$ Input speed = $\frac{1}{28} \times 308$ (1 mark for substitution - allow FTE) Input speed = 11 revs min ⁻¹ (1 mark for correct answer from candidate's working)	4	Alternative method In _{speed} x in _{size} = out _{speed} x out _{size} In _{speed} x 56 = 308 x 8 - 1 mark In _{speed} = 44 (ignore unit) - 1 mark In _{speed} x 48 = 44 x 12 - 1 mark (allow follow through error) In _{speed} = 11 revs min ⁻¹ (1 mark for answer from given working with unit) Do not accept rpm.
11.	(a)		Ek = ½ mv ² = ½ x 7750 x 3 ² (1 mark for substitution) = 34875J (1 mark for correct answer from given working with unit)	2	
	(b)	(i)	E _p = mgh = 7750 x 9·8 x 15 (1 mark for substitution) = 1139250J (1 mark for correct answer from given working with unit)	2	

Question			Expected Answer(s)	Max Mark	Additional Guidance
	(b)	(ii)	Efficiency = <u>Eout</u> Ein	2	Allow FTE from (b) (i)
			$= \frac{1 \cdot 14}{2 \cdot 50}$		
			(1mark for substitution)		
			= 0.456 (0.46)		
			Or 45·6% (46%)		
			(1 mark for correct answer from given working)		
	(c)		Loss of energy/heat/sound 1 mark	2	Explanation
			due to friction 1 mark		Cause - 1 mark effect - 1 mark
	(d)		$\varepsilon = \Delta l / l$	3	Units required
			0·00375 = ∆l /15		
			(1 mark for substitution)		
			Δl = 0·00375 x 15		
			(1 mark for transposition)		
			= 0·056m (0.06m)		
			(1 mark for correct answer with units from given working)		

Question			Expected Answer(s)	Max Mark	Additional Guidance		
12.	(a)		Light Dependant Resistor	1	Not LDR		
	(b)		As the light level decreases the resistance of the LDR increases/ increasing the voltage dropped	4	1 mark for each correct descriptive statement		
			adjusted by the variable resistor.		Z marks voltage division		
			As the voltage across the LDR increases / 0.7V /reaches the correct voltage the transistor will switch on.		1 mark Transistor		
			The LEDs switch on.		1 mark Output		
					No mark for dark sensor without description of voltage divider operation.		
	(c)	(i)	They will all have the same brightness/voltage.	1	1 mark for one correct description		
			Overall more light will be produced.				
			If one goes out the rest will stay on.				
			Easy to fault find /repair because damage component can be clearly seen.				
		(ii)	LEDs uses less energy - LEDs are more efficient - LEDs longer lasting - LEDs are more robust - LEDs are smaller - LEDs output is	1	1 mark for one correct descriptive response Not cheaper		
			brighter				

Question		Expe	cted Answer(s)	Max	Additional Guidance
				Mark	
	(d)	6 - 0)·7 = 5·3V	4	
		(1 ma varial	rk for calculating V across ole resistor)		
		 	$\frac{V_1}{V_2} = \frac{R_1}{R_2}$ $\frac{0.7}{5.3} = \frac{R_1}{5.5}$		
		(1 ma value not de	rk for substitution of 3 s - allow FTE for 6V if 5.3V is etermined)		
		R ₁ =	= 0·13 x 5·5		
		(1 ma	rk for transposition)		
		R ₁	= 0·726 kΩ 726Ω		
		(1 ma given	rk for correct answer from working with unit)		

Que	Question		Expected Answer(s)				Max Mark	Additional Guidance
13.	(a)		Choosing use. Designing (specific a Research and exter	the correc the suppo aspect). loadings (nal - wind	t materia orting stru roller coa: etc)	ls to cture ster	2	1 mark per correct descriptive response
	(b)		To simula safety sys systems, p test their any releva	te control tems, ligh program/f operation ant answe	circuits, ting, brak lowchart . (1 mark r)	ing and for	1	Statement based response
	(c)		(A + B) · C	_ = Z			3	(1 mark OR with bracket, 1 mark AND, 1 mark NOT) Other correct Boolean equations are acceptable
	(d)		К 0 1 1 1 1 1 1 1 1	L 1 0 0 0 0 0 0 0 0	M 0 1 0 0 0 0 0 0 0		3	1 mark for each correct column Allow FTE for column L and M; L = NOT K M = H AND L
	(e)		ΣCWM = ($R_1 \ge 3.5$) (1 mark for $R_1 = 9.0/3$ (1 mark for $R_1 = 2.5$ (1 mark for given wor	ΣACWM = (1·25 x (1 or substitu 3·5 or transpo 7kN (2571 or correct king with	4.0) + •0 x 2•5) + (1•0 x 1 ntion) sition) N) answer fr unit)	om	3	

Que	Question		Expected Answer(s)	Max Mark	Additional Guidance
14.	(a)		 When the solenoid and push button are both activated pilot air is sent to Valve 3. (1 Mark) This causes the cylinder to outstroke slowly. (1 Mark) When the cylinder has outstroked air is sent to the reservoir via the uni-directional restrictor creating a time delay. (1 Mark) Pilot air is then sent to valve 3 causing the cylinder to instroke. (1 Mark) 	4	 1 mark for AND control. 1 mark for speed control when outstroking. 1 mark for Time Delay. 1 mark for instroking.
	(b)		$A_{rod} = \frac{\pi d^2}{4}$ $= \frac{3 \cdot 14 \times 15^2}{4} = 176.6 \text{ (mm}^2\text{)}$ A_{piston} $= \frac{3 \cdot 14 \times 80^2}{4} = 5024 \text{ (mm}^2\text{)}$ (1 mark for correct calculation of either area - ignore units) $A_{effective} = A_{piston} - A_{rod}$ $= 5024 - 176.6$ $= 4847.4 \text{ mm}^2$ (1 mark for correct answer from given working - ignore units) P = F/A $= 1460/4847.4$ (1 mark for substitution) $= 0.3 \text{Nmm}^{-2} (0.3 \text{ MPa})$ (1 mark for correct answer from given working with unit)	4	

Question			Expected Answer(s)	Max Mark	Additional Guidance
	(c)		$R_{\rm T} = \frac{R_1 \times R_2}{R_1 + R_2}$	2	Apply similar mark allocation if the other version of the formula is used.
			$R_{\rm T} = -\frac{300 \times 100}{300 + 100}$		
			(1 mark for substitution)		
			R _T = 75Ω		
			(1 mark for correct answer from given working with unit)		
	(d)	(i)	(A)	1	
		(ii)	X should indicate a wire between solenoid and lamp. Can be top or bottom of branch. Series connection only.	1	

Question		Expected Answer(s)	Max Mark	Additional Guidance
15.	(a)	start Is pin2 on? Yes Pin 6 on Pin 5 on Wait 0.5 s Wait 1 s Pin 6 off Pin 5 off I mark for decision - (pin) 2, with Y or N labelled 1 mark for both (pin) 6 on/off 1 mark for both (pin) 5 on/off 1 mark for continuous loop with arrow 1 mark for all symbols correct	6	Allow FTE for incorrect pin being switched on. Ignore any additional steps <i>Pause 1000</i> (PBASIC) or <i>Delay 1000</i> (C) accepted as wait 1s etc
	(b)	Continuous / infinite loop	1	Named or Described
	(c)	$\sigma = \frac{F}{A}$ 0.095Nmm ⁻² = $\frac{88N}{A}$ (1 mark for substitution) $A = \frac{88}{0.095}$ (1 mark for transposition) $A = 926.3mm^{2}$ (1 mark for correct answer from given working with unit)	3	

Question			Expected Answer(s)	Max Mark	Additional Guidance	
	(d)		Reduces greenhouse gases / CO2 (1 mark). Due to reduced use of fossil fuels (1 mark).	2	Explanation Cause - 1 mark effect - 1 mark Not pollution / gases on own	

[END OF MARKING INSTRUCTIONS]